
PYPIANOROLL: OPEN SOURCE PYTHON PACKAGE FOR HANDLING
MULTITRACK PIANOROLLS

Hao-Wen Dong, Wen-Yi Hsiao and Yi-Hsuan Yang
Research Center for IT Innovation, Academia Sinica, Taipei, Taiwan

{salu133445,wayne391,yang}@citi.sinica.edu.tw

ABSTRACT

The pianoroll representation represents music data as time-
pitch matrices. Although it has been used widely as a way
to visualize music data, it has not been much used in com-
putational modeling of music. To promote its usage, we
present in this paper a new, open source Python package
called Pypianoroll for handling multitrack pianorolls. The
core element of Pypianoroll is a new, lightweight multi-
track pianoroll format that contains additional tempo and
program information along with the pianoroll matrices. It
provides tools for creating, manipulating, storing, analyz-
ing and visualizing multitrack pianorolls in an intuitive
way. Code and documentation are available at https:
//github.com/salu133445/pypianoroll.

1. INTRODUCTION

A pianoroll is a symbolic music representation that records
the presence of pitches at each time step as a binary time-
pitch matrix, as exemplified in Figure 1. To handle multi-
track music, we can similarly define a multitrack pianoroll
as a list of pianorolls, each corresponding to one specific
track (or instrument). There are many possible formats to
represent the multitrack pianoroll. In this paper, we pro-
pose a new format that provides information regarding the
program and tempo of the tracks. We then present Pypi-
anoroll, an open source package released under the MIT
License that provides the following functionalities:
• Core classes that store symbolic music with the pro-

posed format (Section 2)
• Manipulation utilities (Section 3)
• Efficient and space-saving I/O (Section 4.1), and

conversion utilities to/from MIDI files (Section 4.2)
• Utilities for visualization (Section 5.1), evaluation

(Section 5.2), and content analysis (Section 5.3).

2. MULTITRACK PIANOROLL FORMAT

The proposed format stores the program and tempo infor-
mation alongside the pianoroll matrices. For each track,

c© Hao-Wen Dong, Wen-Yi Hsiao and Yi-Hsuan Yang. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Hao-Wen Dong, Wen-Yi Hsiao and Yi-
Hsuan Yang. “Pypianoroll: Open Source Python Package for Handling
Multitrack Pianorolls”, 19th International Society for Music Information
Retrieval Conference, Paris, France, 2018.

Figure 1: Example pianoroll, where the vertical and hori-
zontal axes represent pitch and time, respectively.

we use an integer to specify its program number in a MIDI-
like way, and, following [3], a boolean number to indicate
whether it is a percussion track. Oftentimes, the program
numbers indicate the instruments used during playback.

As for the tempo information, many pianoroll formats,
such as the one implemented in pretty midi [3], use the
absolute timing, where the actual timing (in second) of the
note onsets and offsets are used for the time axis. But, this
introduces performance-level attributes to the pianorolls.

In order to decouple music composition from music per-
formance, we opt for the symbolic timing and make the
time axis invariant to the tempo. We store the tempo value
(in bpm) at each time step as an additional array and re-
move the tempo information from the pianoroll matrices.
As a result, each beat has the same length regardless of the
tempo and we store the number of time steps used to rep-
resent a beat, i.e., the beat resolution, as metadata. In this
way, the length of a note can now represent a musically-
meaningful amount of time, e.g., a 4th or 8th note. 1

In Pypianoroll, we implement the Multitrack class
as a base class for multitrack pianorolls using the proposed
format. As shown in Tables 1 and 2, a Multitrack ob-
ject consists of a list of Track objects, each of which
is composed of a pianoroll matrix, a program number, a
boolean drum indicator and its name. A Multitrack
object also contains a beat resolution (used for all the pi-
anorolls), a tempo array, a downbeat array (that indicates
the locations of downbeats) and its name. Note that other
extended classes can be implemented on top of this base
class. For example, we are designing an extended class that
makes onset/offset explicit to deal with repeating notes.

3. MANIPULATION UTILITIES

We provide in Pypianoroll functions for manipulating mul-
titrack pianorolls in different levels. For more information,
we refer the readers to the online documentation.

1 Note that by setting beat resolution to the sampling rate, pianorolls
in absolute timing are still compatible to Pypianoroll with potentially un-
expected behaviors for functions that rely heavily on the beat resolution.



Attribute Description

tracks List of Track objects
beat resolution Resolution of a beat (in time step)
tempo Array that records the tempo value

(in bpm) at each time step
downbeat Array that indicates the locations of

downbeats (the first beat of a bar)
name Name of the multitrack

Table 1: Attributes of a Multitrack object.

Attribute Description

pianoroll Pianoroll matrix
program Program number according to General

MIDI Level 1 specification 2

is drum Whether it is a percussion track
name Name of the track

Table 2: Attributes of a Track object

4. DATA I/O

4.1 Save & Load

The pianoroll representation may be space-inefficient due
to the large number of zeros (i.e., it is sparse). To ad-
dress this, we implement space-saving I/O by storing the
pianorolls with compressed column storage (CCS), leading
to a lossless compression rate of about 100:1 on average.

4.2 Conversion Utilities

We provide two-way conversion utilities between MIDI
files and multitrack pianorolls. We parse and write MIDI
files using pretty midi [3] and implement the conver-
sions between absolute and symbolic timings, and between
event- and matrix-based representations. To further in-
crease the data source, we plan to implement conversion
utilities for other formats, e.g., MusicXML, in the future.

5. OTHER UTILITIES

5.1 Visualization Utilities

Appropriate visualizations of multitrack pianorolls can
be useful for both analysis and demonstration purposes.
Hence, we provide in Pypianoroll convenient visualization
utilities for multitrack pianorolls. It comes with several
style presets while retaining high flexibility. We show in
Figure 1 an example visualization of a five-track pianoroll.

5.2 Evaluation-related Metrics

We implement in Pypianoroll the evaluation metrics pro-
posed in [1] along with several new metrics, including

2 https://www.midi.org/specifications/item/
gm-level-1-sound-set

3 Although a pianoroll is usually considered to be binary-valued, we
can extend it to be real-valued by treating the values as note velocities. In
Pypianoroll, the pianoroll matrices can be either binary- or real-valued.

Figure 2: Example visualization of a five-track pianoroll
with Pypianoroll. The lightness represents the velocities. 3

empty bar rate, qualified note rate, drum in pattern rate,
n pitches used, n pitch classes used, polyphonic rate,
in scale rate and tonal distance. These metrics can be
useful for evaluating automatic music generation systems
that take multitrack pianorolls as the target outputs.

5.3 Content Analysis Utilities

We plan to provide content analysis utilities in the future.
This may include key detection, chord recognition, chord-
related feature extraction and melody recognition, all of
which are done in the symbolic domain (using pianorolls)
not in the audio domain. Such utilities may contribute to
applications such as lead sheet arrangement [2].

6. CONCLUSIONS

We have proposed in this paper an open source Python
package for handling multitrack pianorolls. We hope it
can facilitate the use of pianoroll formats in research topics
such as music generation and transcription.

7. REFERENCES

[1] H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, and Y.-H. Yang.
MuseGAN: Symbolic-domain music generation and
accompaniment with multi-track sequential generative
adversarial networks. In Proc. AAAI, 2018.

[2] H.-M. Liu and Y.-H. Yang. Lead sheet generation and
arrangement by conditional generative adversarial net-
work. In Proc. ICMLA, 2018.

[3] C. Raffel and D. P. W. Ellis. Intuitive analysis, cre-
ation and manipulation of MIDI data with pretty midi.
In Proc. ISMIR Late Breaking & Demo Paper, 2014.


