KAUST Rising Stars in Al Symposium 2024

# Learning Text-to-Audio Synthesis from Videos

Hao-Wen (Herman) Dong

UC San Diego

February 20, 2024

#### Al for Music & Audio

New technology creates new art form



#### Empowering music and audio creation with machine learning

Music & Audio

#### Music & Audio for Al New art form inspires new technology

#### Empowering music and audio creation with machine learning



Empowering music and audio creation with machine learning



#### **Multitrack Music Generation**







#### **Orchestral Music Generation**

Empowering music and audio creation with machine learning









Score-to-audio synthesis

Empowering music and audio creation with machine learning





#### Learning Sounds from Observations





What does the fox say?

#### Learning Sounds from Observations



#### Can machines learn to synthesize sounds from watching *noisy* videos?











#### CLIPSonic: Text-to-Audio Synthesis with Unlabeled Videos and Pretrained Language-Vision Models

Hao-Wen Dong<sup>1,2\*</sup> Xiaoyu Liu<sup>1</sup> Jordi Pons<sup>1</sup> Gautam Bhattacharya<sup>1</sup> Santiago Pascual<sup>1</sup> Joan Serrà<sup>1</sup> Taylor Berg-Kirkpatrick<sup>2</sup> Julian McAuley<sup>2</sup> <sup>1</sup> Dolby Laboratories <sup>2</sup> University of California San Diego \* Work done during an internship at Dolby



### What is Text-to-Audio Synthesis?

• <u>Goal</u>: Given a text query, generate the corresponding sounds





## Training an Image-to-Audio Synthesis Model

• We start by training an image-to-audio synthesis model



### Training an Image-to-Audio Synthesis Model

• We start by training an image-to-audio synthesis model



### CLIP (Contrastive Language-Image Pretraining)

• Learn a shared embedding space for images and texts via contrastive learning



### Inference – Zero-shot Modality Transfer

• We switch to a pretrained CLIP-text encoder for text-to-sound synthesis



# Inference – Zero-shot Modality Transfer

• We switch to a pretrained CLIP-text encoder for text-to-sound synthesis



# Leveraging Diffusion Prior to Close the Modality Gap

• We adopt a pretrained diffusion prior model to reduce the modality gap



#### Diffusion Prior (Ramesh et al., 2022)



### Leveraging the Visual Domain as a Bridge



**Desired audio-text correspondence** 

No text-audio pairs required!

Scalable to large video datasets!

#### Data

#### MUSIC

(Zhao et al., 2018)

#### VGGSound

(Chen et al., 2020)





Acoustic guitar

Accordion

#### Music instrument playing videos (1,055 videos, 21 instruments)



Hedge trimmer running

Dog bow-wow

Bird chirping, tweeting

#### Noisy videos with diverse sounds (172K videos, 310 classes)

#### Example Text-to-Audio Synthesis Results



#### Example Image-to-Audio Synthesis Results (Out-of-distribution)



#### State-of-the-art image-to-audio synthesis performance!

#### Subjective & Objective Evaluation Results

Table 3: Listening test results for text-to-audio synthesis (MOS).

Table 4: Listening test results for image-to-audio synthesis (MOS).

| Model                        | VGG                                                                             | Sound                                                         | MUSIC                                                                      |                                                               |  |  |
|------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
|                              | Fidelity                                                                        | Relevance                                                     | Fidelity                                                                   | Relevance                                                     |  |  |
| CLIPSonic-ZS<br>CLIPSonic-PD | $\begin{array}{c} 2.55 \pm 0.22 \\ \textbf{3.04} \pm \textbf{0.20} \end{array}$ | $\begin{array}{c} 2.01 \pm 0.27 \\ 2.86 \pm 0.25 \end{array}$ | $\begin{array}{c} 2.98\pm0.23\\ \textbf{3.67}\pm\textbf{0.18} \end{array}$ | $\begin{array}{c} 3.87 \pm 0.24 \\ 3.91 \pm 0.24 \end{array}$ |  |  |
| Ground truth                 | $3.78\pm0.19$                                                                   | $3.54\pm0.29$                                                 | $3.90\pm0.17$                                                              | $4.34\pm0.18$                                                 |  |  |

|                                                               |                                                                                                  | -                                                                                                |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Model                                                         | Fidelity                                                                                         | Relevance                                                                                        |
| CLIPSonic-IQ (image-queried)<br>SpecVQGAN [20]<br>im2wav [21] | $\begin{array}{c} \textbf{3.29} \pm \textbf{0.16} \\ 2.15 \pm 0.17 \\ 2.19 \pm 0.15 \end{array}$ | $\begin{array}{c} 3.80 \pm 0.19 \\ 2.54 \pm 0.23 \\ \textbf{3.90} \pm \textbf{0.22} \end{array}$ |
|                                                               |                                                                                                  |                                                                                                  |



| Table 1: Evaluation                        | Sound and M  |       |       | r for | moreir       |       |              |
|--------------------------------------------|--------------|-------|-------|-------|--------------|-------|--------------|
| Model Check                                | out          | our   | pa    |       | CLAP score ↑ | FAD↓  | CLAP score ↑ |
| CLIPSonic-IQ                               | -            | Image | Image | 2.97  | -            | 4.71  | -            |
| CLIPSonic-ZS (Levo-snot modality transfer) | $\checkmark$ | Image | Text  | 3.43  | 0.258        | 19.30 | 0.284        |
| CLIPSonic-PD (pretrained diffusion prior)  | $\checkmark$ | Image | Text  | 3.04  | 0.265        | 13.51 | 0.254        |
| CLIPSonic-SD (supervised diffusion prior)  | ×            | Image | Text  | 2.37  | 0.234        | 12.13 | 0.299        |
| CLIP-TTA                                   | ×            | Text  | Text  | 2.26  | 0.292        | 9.39  | 0.298        |
| CLAP-TTA                                   | ×            | Text  | Text  | 2.58  | 0.296        | 10.92 | 0.303        |
| BigVGAN mel spectrogram reconstruction     | -            | -     | -     | 0.60  | 0.204        | 6.21  | 0.272        |





- First text-to-audio synthesis model that requires *no* text-audio pairs
- Strong text-to-audio synthesis performance without text-audio data
- State-of-the-art image-to-audio synthesis performance



Paper: <u>arxiv.org/abs/2306.09635</u> Demo: <u>salu133445.github.io/clipsonic</u>



#### What's Next?





#### Video $\rightarrow$ Music & sound effects Text $\rightarrow$ Video with music & sound effects

OpenAl, Sora: Creating video from text, <u>https://openai.com/sora</u>, Feb 15, 2024.

#### Empowering music and audio creation with machine learning



