Learning Sound Separation and Synthesis from Videos using Pretrained Language-vision Models

Hao-Wen (Herman) Dong

University of California San Diego

UC San Diego

園主意湾★学 National Taiwan University 2013 - 2017 About Me B.S. in Electrical Engineering 中央研究院 2017 - 2019 ACADEMIA SINICA Research Assistant **YAMAHA** Summer 2019 Research Intern UC San Diego 2019 - 2021 M.S. in Computer Science Summer 2021 Deep Learning Audio Intern SONY Summer 2022 Student Intern amazon Fall 2022 Applied Scientist Intern Winter 2023 Hi, I'm Herman. Speech/Audio Deep Learning I do Al x Music research. Intern I love music and movies! A Adobe Summer 2023 UC San Diego Research Scientist/Engineer Intern 2019 – present Ph.D. in Computer Science Fall 2023 (expected)

Research Intern

My Research

My Research

Amazon AWS DeepComposer

Pop music generation

Orchestral music generation

My Research

Automatic instrumentation

My Research

Text-queried sound separation

Text-to-audio synthesis

Introduction

Leveraging the Visual Domain as a Bridge

Desired audio-text correspondence

No text-audio pairs required!

Scalable to large video datasets!

Learning Sounds from Videos

- Watching a dog barking, humans can *associate the barking sound to the dog*
- Can machines learn to synthesize sounds from watching *noisy* videos?

What does the fox say?

Learning Sounds from Videos

- Watching a dog barking, humans can *associate the barking sound to the dog*
- Can machines learn to synthesize sounds from watching *noisy* videos?

Overview

CLIPSep

(Dong et al., ICLR 2023)

For text-queried sound separation

CLIPSonic

(Dong et al., WASPAA 2023)

For text-to-audio synthesis

CLIPSep: Learning Text-queried Sound Separation with Noisy Unlabeled Videos

Hao-Wen Dong^{1,2}* Naoya Takahashi¹[†] Yuki Mitsufuji¹ Julian McAuley² Taylor Berg-Kirkpatrick²

¹ Sony Group Corporation ² University of California San Diego * Work done during an internship at Sony [†] Corresponding author

Overview – Text-queried Sound Separation

More samples

salu133445.github.io/clipsep

CLIP (Contrastive Language-Image Pretraining)

• Learn a shared embedding space for images and texts via contrastive learning

Data

MUSIC

(Zhao et al., 2018)

VGGSound

(Chen et al., 2020)

Acoustic guitar

Accordion

Hedge trimmer running

Dog bow-wow

Bird chirping, tweeting

Music instrument playing videos (1,055 videos, 21 instruments)

Noisy videos with diverse sounds (172K videos, 310 classes)

Demo – CLIPSep

Mixture

CLIPSep

Query: "playing harpsichord"

Ground truth

Noise Invariant Training (NIT)

Demo – CLIPSep-NIT

CLIPSep

CLIPSep-NIT

Query: "playing harpsichord"

Ground truth

22

Quantitative Results

			MUSIC ⁺		VGGSound-Clean ⁺	
Model	Unlabeled data	Post-proc. free	Mean SDR	Median SDR	Mean SDR	Median SDR
Mixture	-	-	4.49 ± 1.41	2.04	$\textbf{-0.77} \pm 1.31$	-0.84
Text-queried models						
CLIPSep	\checkmark	\checkmark	9.71 ± 1.21	8.73	2.76 ± 1.00	3.95
CLIPSep-NIT	\checkmark	✓	$\textbf{10.27} \pm \textbf{1.04}$	10.02	$\textbf{3.05} \pm \textbf{0.73}$	3.26
BERTSep		\checkmark	4.67 ± 0.44	4.41	5.09 ± 0.80	5.49
CLIPSep-Text		\checkmark	10.73 ± 0.99	9.93	5.49 ± 0.82	5.06

Significant performance improvement against the baseline!

Demo – Noise Removal

Query: "playing bagpipe"

Mixture

Prediction

Noise head 1 Noise

Noise head 2

CLIPSep

First text-queried universal sound separation model that can be trained using only unlabeled videos

Noise Invariant Training

A new approach for training a query-based sound separation model with **noisy data in the wild**

Paper: <u>arxiv.org/abs/2212.07065</u> Demo: <u>sony.github.io/CLIPSep/</u> Code: <u>github.com/sony/CLIPSep</u>

Overview

CLIPSep

(Dong et al., ICLR 2023)

For text-queried sound separation

CLIPSonic

(Dong et al., WASPAA 2023)

For text-to-audio synthesis

CLIPSonic: Text-to-Audio Synthesis with Unlabeled Videos and Pretrained Language-Vision Models

Hao-Wen Dong^{1,2*} Xiaoyu Liu¹ Jordi Pons¹ Gautam Bhattacharya¹ Santiago Pascual¹ Joan Serrà¹ Taylor Berg-Kirkpatrick² Julian McAuley²

> ¹ Dolby Laboratories ² University of California San Diego * Work done during an internship at Dolby

Overview – Text-to-Audio Synthesis

(These samples are generated by our proposed model.)

More samples

salu133445.github.io/clipsonic

Prior Work – Text-to-Audio Synthesis

- Diffsound (Yang et al., 2023)
- AudioGen (Kreuk et al., 2023)
- AudioLDM (Liu et al., 2023)
- Make-An-Audio (Huang et al., 2023)
- Noise2Music (Huang et al., 2023)
- MusicLM (Agostinelli et al., 2023)

All rely on large amounts of **text-audio training pairs**

Can we learn text-to-audio synthesis *without* using any text-audio pairs?

Yang et al., "Diffsound: Discrete Diffusion Model for Text-to-sound Generation," *TASLP*, 2022. Kreuk et al., "AudioGen: Textually Guided Audio Generation," *ICLR*, 2023. Liu et al., "AudioLDM: Text-to-Audio Generation with Latent Diffusion Models," *ICML*, 2023. Huang et al., "Make-An-Audio: Text-To-Audio Generation with Prompt-Enhanced Diffusion Models," *ICML*, 2023. Huang et al., "Noise2Music: Text-conditioned Music Generation with Diffusion Models," *arXiv preprint arXiv:2302.03917*, 2023. Agostinelli et al., "MusicLM: Generating Music From Text," *arXiv preprint arXiv:2302.03917*, 2023.

Diffusion Model

Training – Image-queried

• We train an image-to-audio synthesis model using a diffusion model on mel spectrograms and a pretrained CLIP-image encoder

Inference – Zero-shot Modality Transfer (CLIPSonic-ZS)

• We first explore using a pretrained CLIP-text encoder directly

How to overcome this modality gap?

• We leverage a pretrained diffusion prior model (Ramesh et al., 2022)

Diffusion Prior (Ramesh et al., 2022)

Inference – Pretrained Diffusion Prior (CLIPSonic-PD)

• We then explore using a pretrained diffusion prior model (Ramesh et al., 2022)

Recap

Training

Inference

CLIPSonic-IQ (image-queried)

CLIPSonic-ZS (zero-shot transfer)

CLIPSonic-PD (pretrained diffusion prior)

Data

MUSIC

(Zhao et al., 2018)

VGGSound

(Chen et al., 2020)

Acoustic guitar

Accordion

Hedge trimmer running

Dog bow-wow

Bird chirping, tweeting

Music instrument playing videos (1,055 videos, 21 instruments)

Noisy videos with diverse sounds (172K videos, 310 classes)

Examples of VGGSound

pheasant crowing

railroad car, train wagon

Implementation Details

Mel spectrogram configuration

- <u>Sampling rate</u>: 16 kHz
- <u>Hop size</u>: 512
- FFT filter size: 2048
- 64 mel bands
- Inverted back to waveforms using BigVGAN (Lee et al., 2023)

Diffusion model

- Based on Improved DDPM (Nichol and Dhariwal, 2019)
- Diffusion steps:
 - <u>Training</u>: 4000
 - <u>Inference</u>: 1000
- Training iterations
 - <u>MUSIC</u>: 200K (1 day on 2 RTX 2080 Tis)
 - VGGSound: 500K (2 days on 2 RTX 2080 Tis)

Inference – Examples

Text-to-Audio Synthesis – Demo

Text-to-Audio Synthesis – Demo

The pretrained diffusion prior model improves the text-audio relevance.

Text-to-Audio Synthesis – Listening Test

Table 3: Listening test results for text-to-audio synthesis (MOS).

Model	VGG	Sound	MUSIC		
WIOUEI	Fidelity	Fidelity Relevance		Relevance	
CLIPSonic-ZS	2.55 ± 0.22	2.01 ± 0.27	2.98 ± 0.23	3.87 ± 0.24	
CLIPSonic-PD	$\textbf{3.04} \pm \textbf{0.20}$	2.86 ± 0.25	$\textbf{3.67} \pm \textbf{0.18}$	3.91 ± 0.24	
Ground truth	3.78 ± 0.19	3.54 ± 0.29	3.90 ± 0.17	4.34 ± 0.18	

Significant performance improvement against the baseline!

Image-to-Audio Synthesis – Demo (Out-of-distribution)

Image-to-Audio Synthesis – Demo (Out-of-distribution)

Our proposed method generates clearer audio than two existing models!

Sheffer and Adi, "<u>I Hear Your True Colors: Image Guided Audio Generation</u>," *ICASSP*, 2023. Iashin and Rahtu, "<u>Taming Visually Guided Sound Generation</u>," *BMVC*, 2021.

Image-to-Audio Synthesis – Listening Test

Table 4: Listening test results for image-to-audio synthesis (MOS).

Model	Fidelity	Relevance
CLIPSonic-IQ (image-queried)	$\textbf{3.29} \pm \textbf{0.16}$	3.80 ± 0.19
SpecVQGAN [20]	2.15 ± 0.17	2.54 ± 0.23
im2wav [21]	2.19 ± 0.15	$\textbf{3.90} \pm \textbf{0.22}$

State-of-the-art image-to-audio performance!

Sheffer and Adi, "<u>I Hear Your True Colors: Image Guided Audio Generation</u>," *ICASSP*, 2023. Iashin and Rahtu, "<u>Taming Visually Guided Sound Generation</u>," *BMVC*, 2021.

Objective Evaluation Metrics

• Evaluated with Fréchet audio distance (FAD) and CLAP score

	Without	Without Query modality		VGGSound		MUSIC		
Model	text-audio pairs	Training	Inference	FAD \downarrow	CLAP score ↑	$FAD\downarrow$	FAD \downarrow CLAP score \uparrow	
CLIPSonic-IQ (image-queried)	-	Image	Image	2.97	-	4.71	-	
CLIPSonic-ZS (zero-shot modality transfer)	1	Image	Text	3.43	0.258	19.30	0.284	
CLIPSonic-PD (pretrained diffusion prior)	1	Image	Text	3.04	0.265	13.51	0.254	
CLIPSonic-SD (supervised diffusion prior)	×	Image	Text	2.37	0.234	12.13	0.200	
CLIP-TTA	X	Text	Text	2.26	0 202			
CLAP-TTA	×	Text	T		-		roci	
BigVGAN mel spectrogram reconstru			_		mol	9	1630	
		na						
	r Da	PC.						
sck out ou	r pa	PC	(b) CLAP	Score† (VGGSo	ınd)		
eck out ou	r pa	pe	0.32 -	b) CLAP	Score↑ (VGGSo	ind)		
eck out ou	r pa	μc	0.32 - 0.30 -	b) CLAP	Score† (VGGSo	und)		
ck out ou	r pa	PC	0.32 - 0.30 - 2 0.28 -	b) CLAP	Score 1 (VGGSo	.ind)		
ck out ou	r pa		0.32 - 0.30 - 0.28 - 0.28 - 0.26 - 0.2	b) CLAP	Score † (VGGSon	und)		
eck out ou	r pa		0.32 0.30 0.28 0.28 0.26	b) CLAP	Score 1 (VGGSor	ind)		
eck out ou	r pa		0.32 - 0.30 - 0.28 - 0.26 - 0.24 - 0.22 -	b) CLAP	Score 1 (VGGSo	ind)		
Eck out ou	rpa		0.32 0.30 0.28 0.26 0.24 0.22	b) CLAP	Score 1 (VGGSo	ind)		
eck out ou	r pa		0.32 0.30 0.28 0.28 0.24 0.24	b) CLAP	Score † (VGGSon	ind)		

Table 1: Evaluation results on VGGS ound and MUSIC datasets, evaluated at w = 1.5.

- Proposed a text-to-audio synthesis model that requires *no* text-audio pairs
- Achieves strong performance in objective and subjective evaluations
- Achieves state-of-the-art performance in image-to-audio synthesis

Paper: <u>arxiv.org/abs/2306.09635</u> Demo: <u>salu133445.github.io/clipsonic</u>

Conclusion

Leveraging the Visual Domain as a Bridge

No text-audio pairs required!

Scalable to large video datasets!

Overview

CLIPSep

(Dong et al., ICLR 2023)

For text-queried sound separation

CLIPSonic

(Dong et al., WASPAA 2023)

For text-to-audio synthesis

Limitations & Future Work

- Off-screen sounds occur frequently in videos
- Cannot handle purely audio-specific queries
- Can we enable compositional prompts?
- Scale up to larger video datasets!

Future Directions

Future Directions

- Audio-visual sound separation
- Multimodal generative AI

Cocktail Fork Problem

Sound Separation in Practice

Google's Audio Magic Eraser

Audio-visual Sound Separation for Audio Remixing

Multimodal Generative AI

Mumbai, the city of dreams.

Multimodal Generative AI for Films

Midjourney	Visuals
Runway	Video
ChatGPT	Narration (script)
ElevenLabs	Narration (voice)
Audiocraft	Sound effects

Multimodal Generative AI for News

Generate an audio in Science Fiction theme: Mars News reporting that Humans send light-speed probe to Alpha Centauri. Start with news anchor, followed by a reporter interviewing a chief engineer from an organization that built this probe, founded by United Earth and Mars Government, and end with the news anchor again.

ScriptGPT-4MusicMusicGenNarrationBarkSound effectsAudioLDM

Controllable Multimodal Generative AI

Controllable Multimodal Generative AI

Audio Type	Layout	ID	Character	Volume	Action	Content Description	Duration
Music	Background	1	N/A	-30	Begin	Dramatic orchestral news theme.	Auto
Speech	Foreground	N/A	Host	-15	N/A	Welcome to Mars News	Auto
Music	Background	1	N/A	N/A	End	N/A	
Speech	Foreground	N/A	Host	-15	N/A	Now let's connect with our on-site reporter	Bin: Javier Editing a
Sound effect	Foreground	N/A	N/A	-35	N/A	Transition swoosh.	<u>ہ</u>
Sound effect	Background	2	N/A	-30	Begin	Background noise of busy engineering office.	
Speech	Foreground	N/A	Reporter	-15	N/A	We're here at the headquarters of	Edit Mode Javi
Speech	Foreground	N/A	Director	-15	N/A	Thank you, so it's a fantastic	
Speech	Foreground	N/A	Reporter	-15	N/A	This is truly an impressive feat	

Integration into professional creative workflow

Acknowledgements

Thank you!

CLIPSep

(Dong et al., ICLR 2023)

For text-queried sound separation

CLIPSonic

(Dong et al., WASPAA 2023)

For text-to-audio synthesis

UC San Diego