## Generative AI for Music and Audio

Hao-Wen (Herman) Dong

董皓文

UC San Diego

#### 圈主喜诊大学 2013 - 2017 About me B.S. in Electrical Engineering 中央研究院 2017 - 2019 CADEMIA SINICA Research Assistant Summer 2019 Research Intern UC San Diego 2019 - 2021 M.S. in Computer Science Summer 2021 Deep Learning Audio Intern SONY Summer 2022 Student Intern amazon Fall 2022 Applied Scientist Intern Winter 2023 Hi, I'm Herman. Speech/Audio Deep Learning Intern I do Al x Music research. I love music and movies! A Adobe Summer 2023 **UC** San Diego Research Scientist/Engineer Intern 2019 – present Ph.D. in Computer Science (expected) 🕺 NVIDIA Fall 2023 -----Research Intern

## About me

EE



a female cat engineer making an electric chip in a classroom

#### Music



a cat playing heavy metal

CS



a cat engineer debugging on laptop

## Introduction

Mumbai, the city of dreams.

## Multimodal generative AI for Films



| Midjourney | Visuals            |
|------------|--------------------|
| Runway     | Video              |
| ChatGPT    | Narration (script) |
| ElevenLabs | Narration (voice)  |
| Audiocraft | Sound effects      |

## What is Generative AI?

• Generative AI is AI capable of generating text, images, or other media.



## **Generative AI for Visual Arts**

#### Al made a magazine cover



(Source: Cosmopolitan)

#### Al won an art contest



(Source: CNN Business)

#### Al won a photography contest



(Source: CNN)

Gloria Liu, "<u>The World's Smartest Artificial Intelligence Just Made Its First Magazine Cover</u>," *Cosmopolitan*, June 21, 2022. Rachel Metz, "<u>Al won an art contest, and artists are furious</u>," *CNN Business*, September 3, 2022. Lianne Kolirin, "<u>Artist rejects photo prize after Al-generated image wins award</u>," *CNN*, April 18, 2023.

One Man Films, "One Shot - WAR ACTION SHORT FILM," YouTube, September 11, 2022.

# Types of Audio

Speech







Music

(Source: Wikimedia Commons)

#### Sound effects





(Source: Wikimedia Commons)

## Generative AI for Music

**Prompt**: relaxing and smooth jazz played in a stylish cafe

**Prompt**: delightful country music with acoustic guitars

**Prompt**: cinematic and suspenseful orchestral music













## **Generative AI for Sound Effects**

#### Text-to-audio Synthesis

#### Image-to-audio Synthesis



Liu et al., "AudioLDM: Text-to-Audio Generation with Latent Diffusion Models," *ICML*, 2023. Dong et al., "<u>CLIPSonic: Text-to-Audio Synthesis with Unlabeled Videos and Pretrained Language-Vision Models</u>," *WASPAA*, 2023.

## Music Information Research (MIR)

• "Intelligent ways to analyze, retrieve and create music" (Yang 2018)











Featured in Amazon AWS DeepComposer











## CLIPSep: Learning Text-queried Sound Separation with Noisy Unlabeled Videos

Hao-Wen Dong<sup>1,2</sup>\* Naoya Takahashi<sup>1†</sup> Yuki Mitsufuji<sup>1</sup> Julian McAuley<sup>2</sup> Taylor Berg-Kirkpatrick<sup>2</sup> <sup>1</sup>Sony Corporation <sup>2</sup>University of California San Diego \* Work done during an internship at Sony <sup>†</sup> Corresponding author



SONY UC San Diego

## CLIP (Contrastive Language-Image Pretraining)

• Learn a shared embedding space for images and texts via contrastive learning



## Leveraging the Visual Domain as a Bridge



#### Desired text-audio correspondence

No text-audio pairs required!

Scalable to large video datasets!



Schuhmann et al., "LAION-5B: An open large-scale dataset for training next generation image-text models," *NeurIPS, Datasets and Benchmarks Track*, 2023. Wu et al., "Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation," *ICASSP*, 2023.



Data

#### MUSIC (Zhao et al., 2018)

#### **VGGSound** (Chen et al., 2020)



Violin

Acoustic guitar

Music instrument playing videos

Accordion

Hedge trimmer running

Dog bow-wow Bird

Bird chirping, tweeting

#### Noisy videos with diverse sounds

## Demo – CLIPSep

#### Query: "playing harpsichord"

#### Mixture



#### CLIPSep



#### Ground truth



## Noise Invariant Training (NIT)



## Demo – CLIPSep-NIT



#### CLIPSep



## CLIPSep-NIT

Query: "playing harpsichord"



#### Ground truth



## **Quantitative Results**

|                     |                   |                    | MUSIC <sup>+</sup>                 |               | VGGSound-Clean <sup>+</sup>       |               |
|---------------------|-------------------|--------------------|------------------------------------|---------------|-----------------------------------|---------------|
| Model               | Unlabeled<br>data | Post-proc.<br>free | Mean SDR                           | Median<br>SDR | Mean SDR                          | Median<br>SDR |
| Mixture             | -                 | -                  | $4.49 \pm 1.41$                    | 2.04          | $-0.77 \pm 1.31$                  | -0.84         |
| Text-queried models |                   |                    |                                    |               |                                   |               |
| CLIPSep             | $\checkmark$      | $\checkmark$       | $9.71 \pm 1.21$                    | 8.73          | $2.76 \pm 1.00$                   | 3.95          |
| CLIPSep-NIT         | $\checkmark$      | ✓                  | $\textbf{10.27} \pm \textbf{1.04}$ | 10.02         | $\textbf{3.05} \pm \textbf{0.73}$ | 3.26          |
| BERTSep             |                   | $\checkmark$       | $4.67\pm0.44$                      | 4.41          | $5.09\pm0.80$                     | 5.49          |
| CLIPSep-Text        |                   | $\checkmark$       | $10.73\pm0.99$                     | 9.93          | $5.49 \pm 0.82$                   | 5.06          |

#### **Significant performance improvement** against the baseline!

## Demo – Noise Removal

#### Query: "playing bagpipe"

#### Mixture



# Prediction



# Noise head 1

#### Noise head 2





## CLIPSep

First text-queried universal sound separation model that can be trained using only unlabeled videos

## **Noise Invariant Training**

A new approach for training a query-based sound separation model with **noisy data in the wild** 



Paper: <u>arxiv.org/abs/2212.07065</u> Demo: <u>sony.github.io/CLIPSep/</u> Code: <u>github.com/sony/CLIPSep</u>







## CLIPSonic: Text-to-Audio Synthesis with Unlabeled Videos and Pretrained Language-Vision Models

**Hao-Wen Dong**<sup>1,2\*</sup> Xiaoyu Liu<sup>1</sup> Jordi Pons<sup>1</sup> Gautam Bhattacharya<sup>1</sup> Santiago Pascual<sup>1</sup> Joan Serrà<sup>1</sup> Taylor Berg-Kirkpatrick<sup>2</sup> Julian McAuley<sup>2</sup>

> <sup>1</sup> Dolby Laboratories <sup>2</sup> University of California San Diego \* Work done during an internship at Dolby



## Diffusion model



#### **Remove noise gradually** (Backward diffusion process)

 $q(\mathbf{x}_t | \mathbf{x}_{t-1})$ 

3.0

Input



 $\mathbf{x}_T$ 

## CLIPSonic – Training (Image-queried)

- We train the model to perform image-to-audio synthesis
  - Encode a video frame using a pretrained CLIP-image encoder (Radford et al., 2021)



## CLIPSonic – Inference (Text-queried)

- We use a pretrained diffusion prior model (Ramesh et al., 2022)
  - To generate a CLIP-image embedding given a CLIP-text embedding



## CLIPSonic – Inference Examples



Data

#### MUSIC (Zhao et al., 2018)

#### **VGGSound** (Chen et al., 2020)



Violin

Acoustic guitar

Music instrument playing videos

Accordion

## Hedge trimmer running Dog bow-wow



Bird chirping, tweeting

#### Noisy videos with diverse sounds

#### Zhao et al., "<u>The Sound of Pixels</u>," *ECCV*, 2018. (<u>dataset</u>) Chen et al., "<u>VGGSound: A Large-Scale Audio-Visual Dataset</u>," *ICASSP*, 2020. (<u>dataset</u>)

## Text-to-Audio Synthesis – Demo



Smoke detector beeping





Playing violin fiddle





## Text-to-Audio Synthesis – Listening Test

Table 3: Listening test results for text-to-audio synthesis (MOS).

| Modal        | VGG                               | Sound         | MU                                | MUSIC         |  |  |
|--------------|-----------------------------------|---------------|-----------------------------------|---------------|--|--|
| WIOUEI       | Fidelity                          | Relevance     | Fidelity                          | Relevance     |  |  |
| CLIPSonic-ZS | $2.55\pm0.22$                     | $2.01\pm0.27$ | $2.98\pm0.23$                     | $3.87\pm0.24$ |  |  |
| CLIPSonic-PD | $\textbf{3.04} \pm \textbf{0.20}$ | $2.86\pm0.25$ | $\textbf{3.67} \pm \textbf{0.18}$ | $3.91\pm0.24$ |  |  |
| Ground truth | $3.78\pm0.19$                     | $3.54\pm0.29$ | $3.90\pm0.17$                     | $4.34\pm0.18$ |  |  |

#### Significant performance improvement against the baseline!

## Image-to-Audio Synthesis – Demo (Out-of-distribution)



## Image-to-Audio Synthesis – Listening Test

Table 4: Listening test results for image-to-audio synthesis (MOS).

| Model                        | Fidelity                          | Relevance                         |
|------------------------------|-----------------------------------|-----------------------------------|
| CLIPSonic-IQ (image-queried) | $\textbf{3.29} \pm \textbf{0.16}$ | $3.80\pm0.19$                     |
| SpecVQGAN [20]               | $2.15\pm0.17$                     | $2.54\pm0.23$                     |
| im2wav [21]                  | $2.19\pm0.15$                     | $\textbf{3.90} \pm \textbf{0.22}$ |

**State-of-the-art** image-to-audio performance!



- Proposed a text-to-audio synthesis model that requires *no* text-audio pairs
- Achieves strong performance in objective and subjective evaluations
- Achieves state-of-the-art performance in image-to-audio synthesis



Paper: <u>arxiv.org/abs/2306.09635</u> Demo: <u>salu133445.github.io/clipsonic</u>



## Conclusion

## Leveraging the Visual Domain as a Bridge



#### Desired text-audio correspondence

No text-audio pairs required!

Scalable to large video datasets!

## A Lot More to Learn from Videos

- Free audio-visual correspondence
- Rich context information
- Rich temporal dynamics



## **Future Directions**



Multimodality

Usability

#### Licensing



## **Multimodal Generative Al**



## Multimodal generative AI for Ads



Video Runway Gen-2 Music MusicGen



## Generative AI for News



Generate an audio in Science Fiction theme: Mars News reporting that Humans send light-speed probe to Alpha Centauri. Start with news anchor, followed by a reporter interviewing a chief engineer from an organization that built this probe, founded by United Earth and Mars Government, and end with the news anchor again.

ScriptGPT-4MusicMusicGenNarrationBarkSound effectsAudioLDM

## **Controllable** Generative AI



## **Controllable** Generative AI

| Audio<br>Type   | Layout     | ID  | Character | Volume | Action | Content Description                             | Duration            |
|-----------------|------------|-----|-----------|--------|--------|-------------------------------------------------|---------------------|
| Music           | Background | 1   | N/A       | -30    | Begin  | Dramatic orchestral news theme.                 | Auto                |
| Speech          | Foreground | N/A | Host      | -15    | N/A    | Welcome to Mars News                            | Auto                |
| Music           | Background | 1   | N/A       | N/A    | End    | N/A                                             | 000                 |
| Speech          | Foreground | N/A | Host      | -15    | N/A    | Now let's connect with our<br>on-site reporter  | Bin: Javier Editing |
| Sound<br>effect | Foreground | N/A | N/A       | -35    | N/A    | Transition swoosh.                              | ٩                   |
| Sound<br>effect | Background | 2   | N/A       | -30    | Begin  | Background noise of busy<br>engineering office. |                     |
| Speech          | Foreground | N/A | Reporter  | -15    | N/A    | We're here at the headquarters of $\ldots$      | Edit Mode Javi      |
| Speech          | Foreground | N/A | Director  | -15    | N/A    | Thank you, so it's a fantastic                  |                     |
| Speech          | Foreground | N/A | Reporter  | -15    | N/A    | This is truly an impressive feat                |                     |



#### Integration into professional creative workflow

## Licensing Example – Adobe Firefly



Trained with royalty-free Adobe Stock images

## Acknowledgements





