Generative Al for Music and Audio

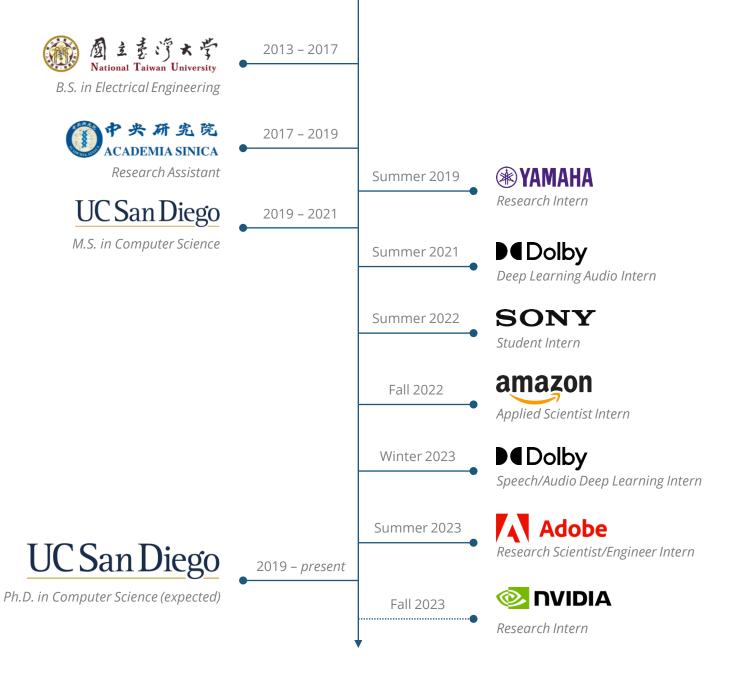
Hao-Wen (Herman) Dong

董皓文

UC San Diego

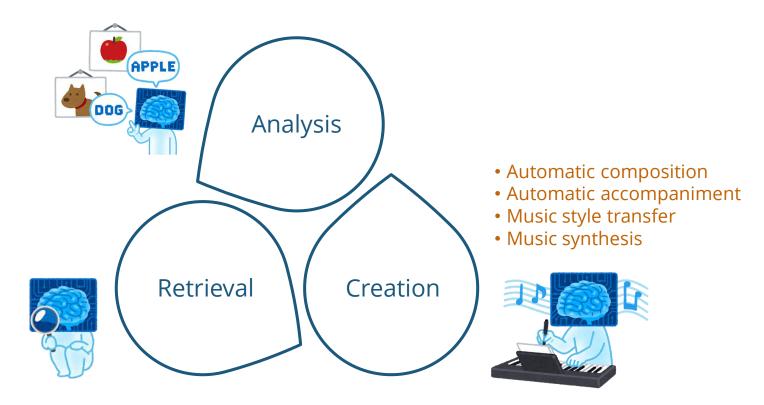
About me

Hi, I'm Herman.
I do Al x Music research.
I love music and movies!

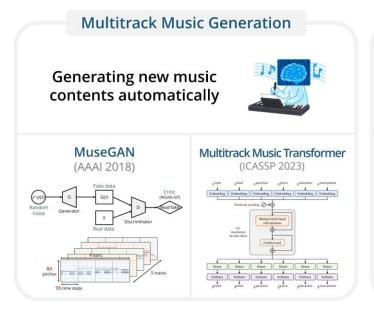


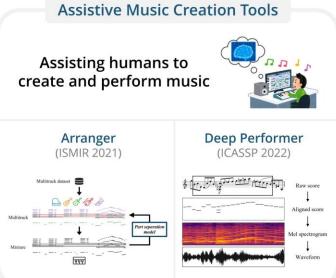
Music Information Research (MIR)

• "Intelligent ways to analyze, retrieve and create music" (Yang 2018)



My Research





About me

EE

a female cat engineer making an electric chip in a classroom

Music

a cat playing heavy metal

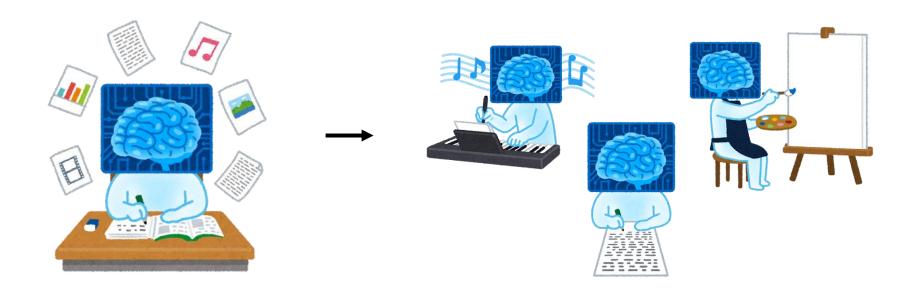
CS

a cat engineer debugging on laptop

Introduction

What is Generative Al?

- Generative Al is Al capable of generating text, images, or other media.
 - Learns the patterns and structure of their input training data
 - Generates new data that has similar characteristics



Generative AI for Visual Arts

Al made a magazine cover



(Source: Cosmopolitan)

Al won an art contest

(Source: CNN Business)

Al won a photography contest

(Source: CNN)

Landscape of Generative Al

Where is all the money going in generative AI?

Distribution of generative AI funding, Q3'22 - Q2'23

Generative interfaces

\$2,690M | 23 deals

Source: CB Insights. Based on an analysis of 210+ generative AI companies building cross-industry enterprise solutions; excludes deals to industry-specific companies and model developers such as OpenAI.

*Includes 1 deal in motion capture animation and 1 deal in synthetic anonymization with undisclosed funding.

Landscape of Generative Al

Where is all the money going in generative AI?

Distribution of generative AI funding, Q3'22 - Q2'23

Generative interfaces

\$2,690M | 23 deals

Source: CB Insights. Based on an analysis of 210+ generative AI companies building cross-industry enterprise solutions; excludes deals to industry-specific companies and model developers such as OpenAI.

*Includes 1 deal in motion capture animation and 1 deal in synthetic anonymization with undisclosed funding.

Types of Audio

Sound effects

Speech

Music

(Source: Wikimedia Commons)

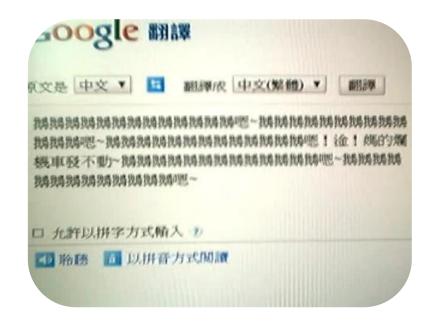
(Source: Wikimedia Commons)

(Source: Wikimedia Commons)

BPJ Media Inc, <u>CC BY-SA 3.0</u>, via Wikimedia Commons. Vancouver Film SchoolRetouched version by User:Quenhitran., <u>CC BY 2.0</u>, via Wikimedia Commons. The Blackbird Academy, <u>CC BY-SA 2.0</u>, via Wikimedia Commons. One Man Films, "<u>One Shot - WAR ACTION SHORT FILM</u>," *YouTube*, September 11, 2022.

Generative Al for Speech

Text-to-Speech



Voice Cloning

Generative Al for Music

Prompt: relaxing and smooth jazz played in a stylish cafe

Prompt: delightful country music with acoustic guitars

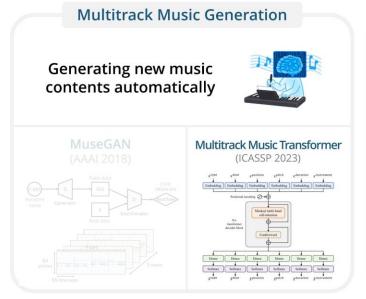
Prompt: cinematic and suspenseful orchestral music

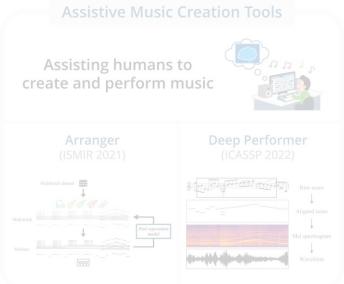
Generative AI for Sound Effects

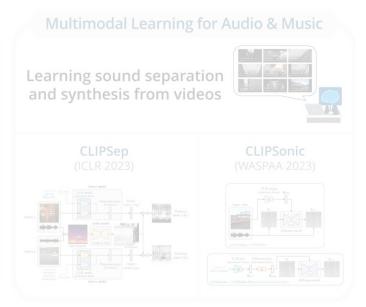
Text-to-audio Synthesis

Image-to-audio Synthesis

My Research







Multitrack Music Transformer

Hao-Wen Dong Ke Chen Shlomo Dubnov Julian McAuley Taylor Berg-Kirkpatrick University of California San Diego

UC San Diego

Overview

Generate orchestral music

- of diverse instruments
- using a new compact representation
- with a multi-dimensional transformer

(Source: Vienna Mozart Orchestra)

Related Work (Transformers for Music Generation)

Model	Multitrack	Instrument control	Compound tokens	Generative modeling
REMI [5]				\checkmark
MMM [10]	\checkmark			\checkmark
CP [6]			\checkmark	\checkmark
MusicBERT [15]	✓		\checkmark	
FIGARO [11]	✓			✓
MMT (ours)	√	√	√	✓

Longor sampl		Average sample length (sec)	
Longer samples!	otes per se	(notes per se	
Longor samples!	<u>5.66</u>	<u>5.66</u>	<u>5.66</u>
	3.58	3.58	59 3.58

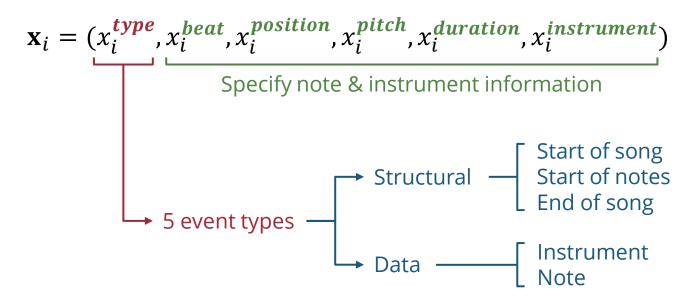
Huang and Yang, "Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions," *Proc. MM*, 2020. Ens and Pasquier, "MMM: Exploring Conditional Multi-Track Music Generation with the Transformer," *arXiv preprint arXiv:2008.06048*, 2020. Hsiao et al., "Compound Word Transformer: Learning to Compose Full-Song Music over Dynamic Directed Hypergraphs," *Proc. AAAI*, 2023. Zeng et al., "MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training," *Proc. Findings of ACL*, 2021. von Rütte et al., "FIGARO: Controllable Music Generation using Learned and Expert Features," *Proc. ICLR*, 2023.

Representation

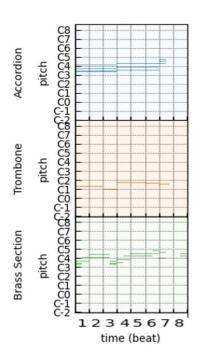
• We represent a music piece as a sequence of events

$$\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$$

• Each event x_i is encoded as



Representation (An Example)



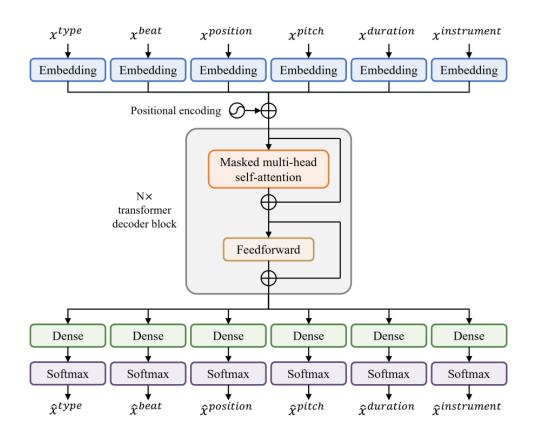
Structural events

```
Start of song
                        Instrument: accordion
                  15)
                  36)
                        Instrument: trombone
                                               Instrument events
                  39)
                        Instrument: brasses
                        Start of notes
                                                   pitch=E2, duration=48, instrument=trombone
                        Note: beat=1, position=1,
                        Note: beat=1, position=1,
                                                   pitch=E4, duration=12, instrument=brasses
                        Note: beat=1, position=1,
                                                   pitch=E4, duration=72, instrument=accordion
                        Note: beat=1, position=1,
                                                   pitch=G4, duration=12, instrument=brasses
                                                  pitch=G4, duration=72, instrument=accordion
          68, 17, 15)
                        Note: beat=1, position=1,
                                                   pitch=C5, duration=72, instrument=accordion
                        Note: beat=1, position=1,
       1, 73, 17, 15)
                        Note: beat=1, position=13, pitch=G4, duration=12, instrument=brasses
                        Note: beat=1, position=13, pitch=C5, duration=12, instrument=brasses
(3, 2, 1, 73, 12, 39)
                        Note: beat=2, position=1,
                                                  pitch=C5, duration=36, instrument=brasses
                        Note: beat=2, position=1,
                                                  pitch=E5, duration=36, instrument=brasses
(3, 2, 1, 77, 12, 39)
(4, 0,
       0, 0,
                        End of song
```

Note events

Multitrack Music Transformer

- A multi-dimensional decoder-only transformer model
 - Predict six fields at the same time
- Trained autoregressively
 - Predict the next event given past events



Three Sampling Modes

Unconditional generation

Input

```
Input

(0, 0, 0, 0, 0, 0)

Start of song

(1, 0, 0, 0, 0, 0, 15)

Instrument: accordion

(1, 0, 0, 0, 0, 0, 36)

Instrument: trombone

(1, 0, 0, 0, 0, 0, 39)

Instrument: brasses

(2, 0, 0, 0, 0, 0)

Start of notes

(3, 1, 1, 41, 15, 36)

Note: beat=1, position=1, pitch=E2, duration=48, instrument=trombone

(3, 1, 1, 65, 4, 39)

Note: beat=1, position=1, pitch=E4, duration=12, instrument=brasses

(3, 1, 1, 68, 4, 39)

Note: beat=1, position=1, pitch=G4, duration=72, instrument=brasses

(3, 1, 1, 68, 17, 15)

Note: beat=1, position=1, pitch=G4, duration=72, instrument=accordion

(3, 1, 1, 73, 17, 15)

Note: beat=1, position=1, pitch=G4, duration=72, instrument=accordion

(3, 1, 13, 68, 4, 39)

Note: beat=1, position=1, pitch=G5, duration=12, instrument=brasses

(3, 1, 13, 73, 4, 39)

Note: beat=1, position=13, pitch=G4, duration=12, instrument=brasses

(3, 2, 1, 73, 12, 39)

Note: beat=2, position=1, pitch=C5, duration=36, instrument=brasses

(3, 2, 1, 77, 12, 39)

Note: beat=2, position=1, pitch=E5, duration=36, instrument=brasses

...

(4, 0, 0, 0, 0, 0, 0)

End of song
```

Only need to train ONE model!

Instrument-informed generation

Input (0, 0, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 15) (1, 0, 0, 0, 0, 36) (1, 0, 0, 0, 0, 36) (1, 0, 0, 0, 0, 38) (1, 0, 0, 0, 0, 39) (1, 0, 0, 0, 0, 39) (1, 0, 0, 0, 0, 0) (2, 0, 0, 0, 0, 0) (3, 1, 1, 41, 15, 36) (3, 1, 1, 65, 4, 39) (3, 1, 1, 65, 17, 15) (3, 1, 1, 68, 4, 39) (3, 1, 1, 68, 4, 39) (3, 1, 1, 68, 17, 15) (3, 1, 1, 68, 17, 15) (3, 1, 1, 68, 17, 15) (3, 1, 1, 68, 17, 15) (3, 1, 1, 68, 17, 15) (3, 1, 1, 68, 17, 15) (3, 1, 1, 73, 17, 15) (3, 1, 1, 73, 17, 15) (3, 1, 13, 73, 4, 39) (3, 1, 13, 73, 4, 39) (3, 1, 13, 73, 4, 39) (3, 1, 13, 73, 4, 39) (3, 1, 13, 73, 4, 39) (3, 1, 13, 73, 4, 39) (3, 1, 17, 71, 12, 39) (3, 1, 17, 71, 12, 39) (3, 1, 17, 71, 12, 39) (4, 0, 0, 0, 0, 0) Start of song Instrument: accordion Instrument: trombone Instrument: brasses Note: beat=1, position=1, pitch=E4, duration=48, instrument=trombone Instrument=brasses (3, 1, 1, 65, 4, 39) (3, 1, 1, 65, 4, 39) (3, 1, 1, 65, 4, 39) (3, 1, 1, 73, 17, 15) (3, 1, 13, 73, 4, 39) (3, 1, 13, 73, 4, 39) (3, 2, 1, 73, 12, 39) (3, 2, 1, 73, 12, 39) (4, 0, 0, 0, 0, 0, 0) Start of song Start of song

N-beat continuation

```
Start of song
           0, 0, 15)
                       Instrument: accordion
                       Instrument: trombone
                       Instrument: brasses
                       Start of notes
                       Note: beat=1, position=1, pitch=E2, duration=48, instrument=trombone
                       Note: beat=1, position=1, pitch=E4, duration=12, instrument=brasses
                       Note: beat=1, position=1, pitch=E4, duration=72, instrument=accordion
(3, 1, 1, 65, 17, 15)
                       Note: beat=1, position=1, pitch=G4, duration=12, instrument=brasses
(3, 1, 1, 68, 4, 39)
(3, 1, 1, 68, 17, 15) Note: beat=1, position=1, pitch=G4, duration=72, instrument=accordion
                       Note: beat=1, position=1, pitch=C5, duration=72, instrument=accordion
(3, 1, 13, 68, 4, 39) Note: beat=1, position=13, pitch=G4, duration=12, instrument=brasses
                       Note: beat=1, position=13, pitch=C5, duration=12, instrument=brasses
```

Experimental Setup

Data

- Symbolic Orchestral Database (SOD) (Crestel et al., 2017)
 - 5,743 songs, 357 hours
- Temporal resolution: 12 time steps per quarter note
- 80% training, 10% validation, 10% test
- Data augmentation
 - Randomly shift for -5~6 semitones
 - Randomly select a starting beat

Model & Training

- 6 transformer decoder blocks
- 8 attention heads
- Model dimension: 512
- Sequence length: 1024
- Maximum number of beats: 256
- Maximum training steps: 200,000

Example Results

Unconditional generation

Instrument-informed generation

church-organ, viola, contrabass, strings, voices, horn, oboe 4-beat continuation

Wolfgang Amadeus Mozart's Eine kleine Nachtmusik

More audio samples

salu133445.github.io/mmt/

Subjective Listening Test Results

2.6x/3.5x longer

generated samples

(within the same sequence length)

	Number of	Average sample	Inference speed	Subjective listening test results			
parameters	length (sec)	(notes per second)	Coherence	Richness	Arrangement	Overall	
MMM [10] REMI+ [11] MMT (ours)	19.81 M 20.72 M 19.94 M	38.69 28.69 100.42	5.66 3.58 11.79	3.48 ± 0.35 3.90 ± 0.52 3.55 ± 0.46	3.05 ± 0.38 3.74 ± 0.21 3.53 ± 0.35	3.28 ± 0.37 3.74 ± 0.44 3.40 ± 0.44	3.17 ± 0.43 3.77 ± 0.41 3.33 ± 0.47

2.1x/3.3x faster

inference speed

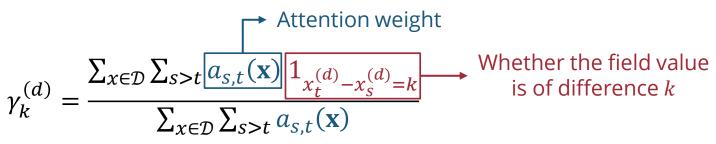
Higher quality than MMM

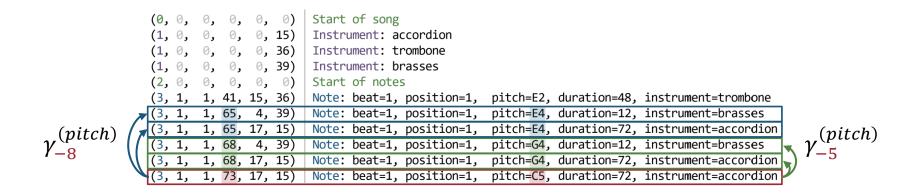
Lower quality than REMI+

Ens and Pasquier, "MMM: Exploring Conditional Multi-Track Music Generation with the Transformer," *arXiv preprint arXiv:2008.06048*, 2020. von Rütte et al., "FIGARO: Controllable Music Generation using Learned and Expert Features," *Proc. ICLR*, 2023.

Analyzing Self-attention

• *Mean relative attention* for a field *d*:





Analyzing Self-attention

• *Mean relative attention* for a field *d*:

$$\gamma_k^{(d)} = \frac{\sum_{\mathbf{x} \in \mathcal{D}} \sum_{s>t} a_{s,t}(\mathbf{x}) \mathbf{1}_{x_t^{(d)} - x_s^{(d)} = k}}{\sum_{\mathbf{x} \in \mathcal{D}} \sum_{s>t} a_{s,t}(\mathbf{x})}$$

Biased towards difference that occurred more frequently!

Mean relative attention gain for a field d:

$$\tilde{\gamma}_k^{(d)} = \gamma_k^{(d)} - \frac{\sum_{x \in \mathcal{D}} \sum_{s > t} \mathbf{1}_{x_t^{(d)} - x_s^{(d)} = k}}{\sum_{x \in \mathcal{D}} \sum_{s > t} \mathbf{1}_{\mathbf{1}}}$$

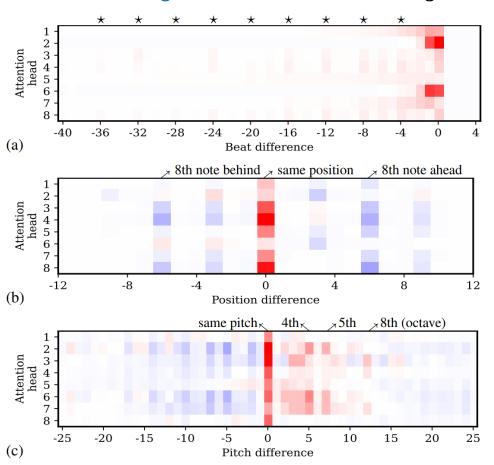
Assuming a uniform attention matrix

Musical Self-attention

The MMT model attends more to notes

- that are 4N beats away in the past
- that have the same position as the current note (A note on beat attends more to a note on beat; a note off beat attends more to a note off beat.)
- that has a pitch in an octave above which forms a consonant interval
- → MMT learns a relative self-attention for certain aspects of music, specifically, beat, position and pitch.

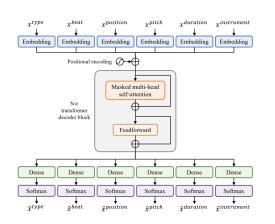
Positive and negative mean relative attention gain



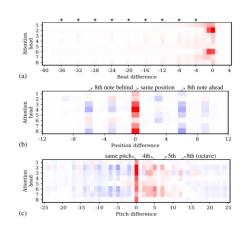
Summary

- Proposed an efficient representation and model for multitrack music generation
- Presented the first systematic analysis of musical self-attention

Multitrack Music Transformer



Musical Self-attention

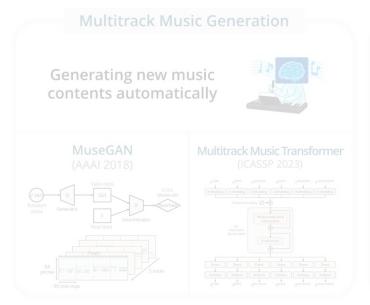


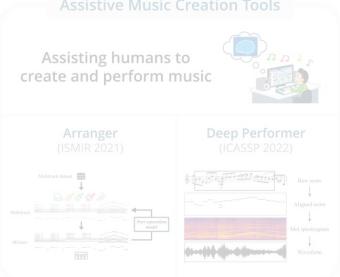
Paper: arxiv.org/abs/2207.06983

Demo: salu133445.github.io/mmt/

Code: github.com/salu133445/mmt

My Research





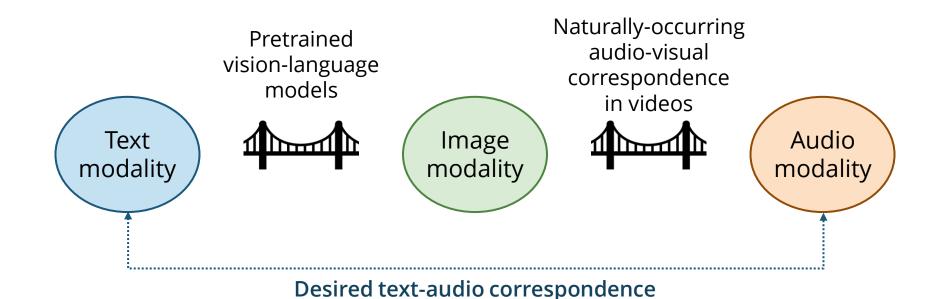
CLIPSonic: Text-to-Audio Synthesis with Unlabeled Videos and Pretrained Language-Vision Models

Hao-Wen Dong^{1,2}* Xiaoyu Liu¹ Jordi Pons¹ Gautam Bhattacharya¹ Santiago Pascual¹ Joan Serrà¹ Taylor Berg-Kirkpatrick² Julian McAuley²

Dolby Laboratories ² University of California San Diego
 * Work done during an internship at Dolby

UC San Diego

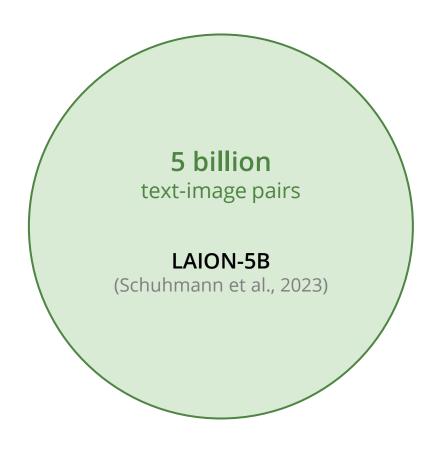
Leveraging the Visual Domain as a Bridge



No text-audio pairs required!

Scalable to large video datasets!

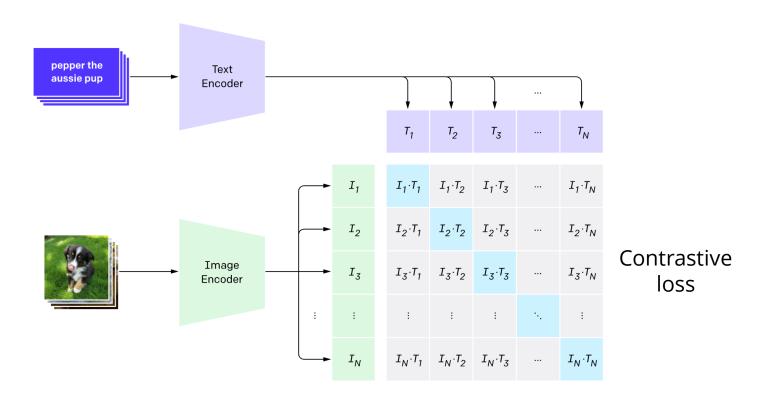
Why NOT Text-audio Pairs?



VouTube videos! 500 hours of videos uploaded per minute 0.6 million text-audio pairs LAION-Audio-630K (Wu et al., 2023)

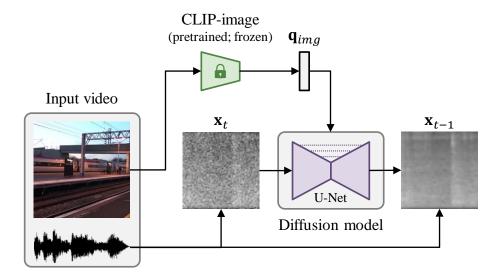
CLIP (Contrastive Language-Image Pretraining)

Learned a shared embedding space for images and texts via contrastive learning



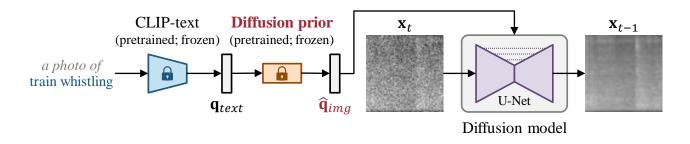
CLIPSonic – Training

- We train the model to perform image-to-audio synthesis
 - Encode a video frame using a pretrained CLIP-image encoder (Radford et al., 2021)

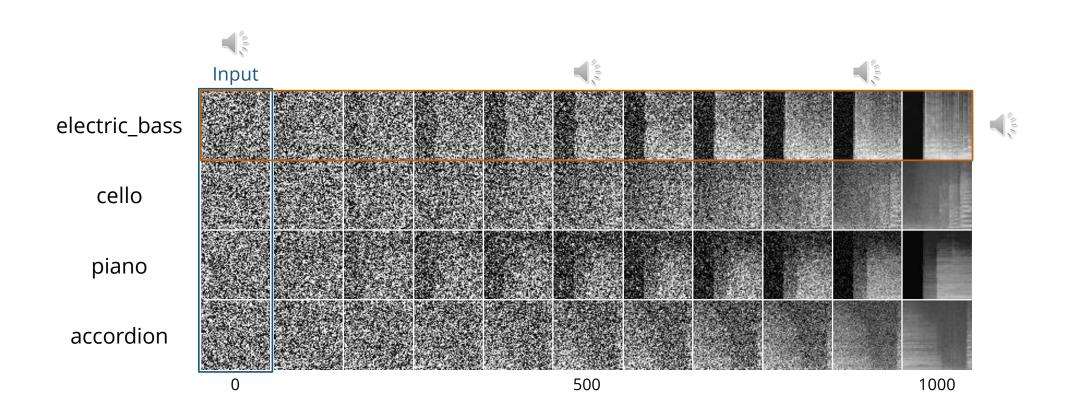


CLIPSonic - Inference

- We use a pretrained diffusion prior model (Ramesh et al., 2022)
 - To generate a CLIP-image embedding given a CLIP-text embedding



CLIPSonic – Inference Examples



Data

MUSIC

(Zhao et al., 2018)

VGGSound

(Chen et al., 2020)

Violin

Acoustic guitar

Accordion

Hedge trimmer running

Dog bow-wow

Bird chirping, tweeting

Music instrument playing videos

Noisy videos with diverse sounds

Text-to-Audio Synthesis Demo

Rapping	Sea waves	Smoke detector beeping	Playing table tennis	Thunder	Playing violin fiddle

Subjective Listening Test (text-to-audio synthesis)

- CLIPSonic-PD with a pretrained diffusion prior model performs significantly better
 - than its counterpart without a diffusion prior model (CLIPSonic-ZS)
 - in terms of fidelity on both datasets
 - in terms of relevance on MUSIC

Table 3: Listening test results for text-to-audio synthesis (MOS).

Model	VGG	Sound	MUSIC		
Widdei	Fidelity	Relevance	Fidelity	Relevance	
CLIPSonic-ZS					
CLIPSonic-PD	$\textbf{3.04} \pm \textbf{0.20}$	2.86 ± 0.25	$\textbf{3.67} \pm \textbf{0.18}$	3.91 ± 0.24	
Ground truth	3.78 ± 0.19	3.54 ± 0.29	3.90 ± 0.17	4.34 ± 0.18	

Significant performance improvement

Image-to-Audio Synthesis Demo (out-of-distribution)

Demo

Im2wav (Sheffer & Adi, 2023)

SpecVQGAN (lashin & Rahtu, 2021)

Im2wav (Sheffer & Adi, 2023)

SpecVQGAN (lashin & Rahtu, 2021)

Subjective Listening Test (image-to-audio synthesis)

- CLIPSonic-IQ significantly outperforms im2wav and SpecVQGAN in audio fidelity
- CLIPSonic-IQ significantly outperforms SpecVQGAN in text-audio relevance
- CLIPSonic-IQ is competitive against im2wav in text-audio relevance

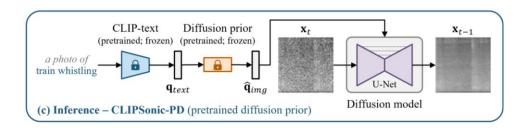
Table 4: Listening test results for image-to-audio synthesis (MOS).

Model	Fidelity	Relevance
CLIPSonic-IQ (image-queried)	$\textbf{3.29} \pm \textbf{0.16}$	3.80 ± 0.19
SpecVQGAN [20]	2.15 ± 0.17	2.54 ± 0.23
im2wav [21]	2.19 ± 0.15	$\textbf{3.90} \pm \textbf{0.22}$

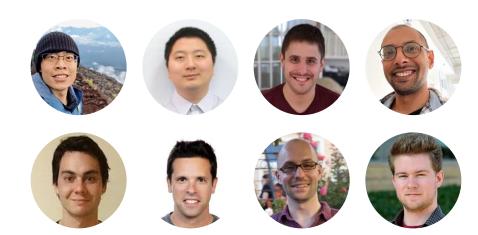
State-of-the-art image-to-audio performance!

Summary

- Proposed a new text-to-audio synthesis model that requires *no* text-audio pairs
- CLIPSonic-PD achieves good performance in objective and subjective evaluations
- CLIPSonic-IQ achieves state-of-the-art performance in image-to-audio synthesis



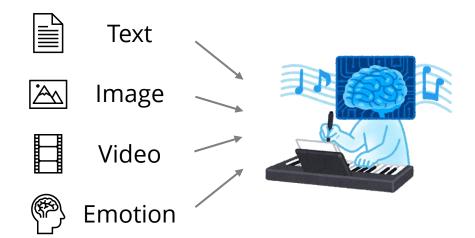
Paper: <u>arxiv.org/abs/2306.09635</u> Demo: salu133445.github.io/clipsonic



Future of Generative Al

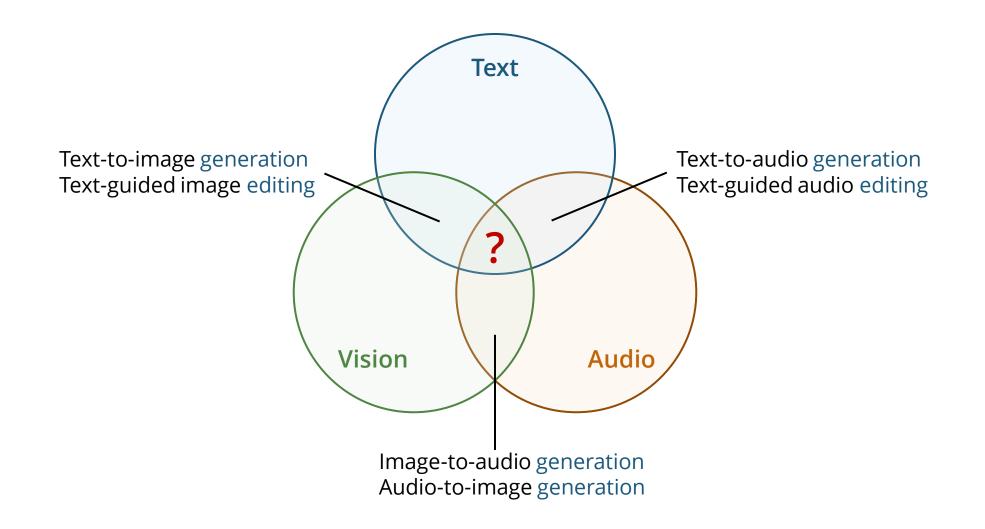
Challenges

Multimodality



Usability

Multimodal Generative Al



Multimodal generative AI for Ads

Video Runway Gen-2

Music MusicGen

Multimodal generative AI for Films

Visuals **Midjourney**

Video **Runway**

Narration (script) ChatGPT

Narration (voice) **ElevenLabs**

Sound effects Audiocraft

Generative AI for News

Generate an audio in Science Fiction theme: Mars News reporting that Humans send light-speed probe to Alpha Centauri. Start with news anchor, followed by a reporter interviewing a chief engineer from an organization that built this probe, founded by United Earth and Mars Government, and end with the news anchor again.

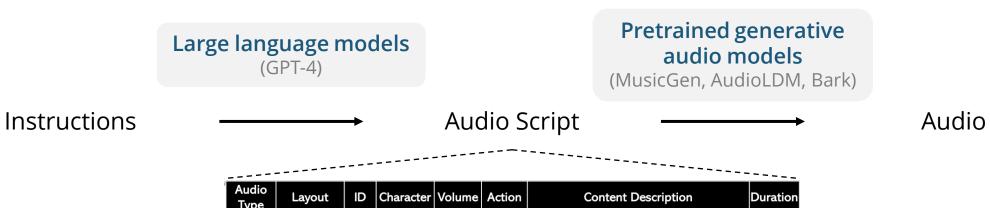
Script **GPT-4**

Music **MusicGen**

Narration **Bark**

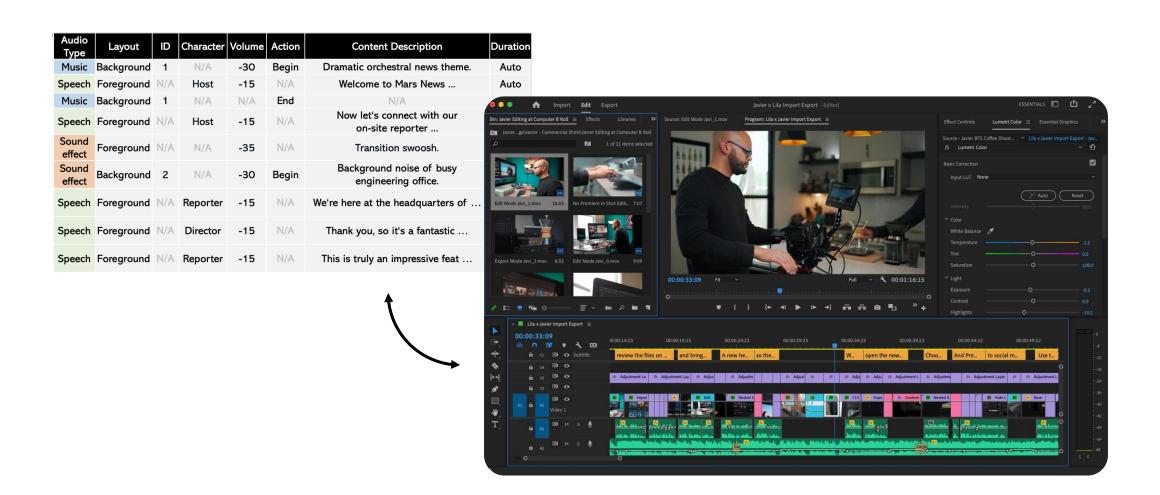
Sound effects AudioLDM

Controllable Generative Al



Audio Type	Layout	ID	Character	Volume	Action	Content Description	Duration
Music	Background	1	N/A	-30	Begin	Dramatic orchestral news theme.	Auto
Speech	Foreground	N/A	Host	-15	N/A	Welcome to Mars News	Auto
Music	Background	1	N/A	N/A	End	N/A	Auto
Speech	Foreground	N/A	Host	-15	N/A	Now let's connect with our on-site reporter	Auto
Sound effect	Foreground	N/A	N/A	-35	N/A	Transition swoosh.	1
Sound effect	Background	2	N/A	-30	Begin	Background noise of busy engineering office.	Auto
Speech	Foreground	N/A	Reporter	-15	N/A	We're here at the headquarters of	Auto
Speech	Foreground	N/A	Director	-15	N/A	Thank you, so it's a fantastic	Auto
Speech	Foreground	N/A	Reporter	-15	N/A	This is truly an impressive feat	Auto

Controllable Generative Al



Acknowledgements

