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Some notable DGMs
A brief introduction
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VAE (Variational Autoencoder)
• minimize reconstruction loss
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GAN (Generative Adversarial Network)
• minimize divergence between the distribution of real data and generated samples
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• minimize reconstruction loss 
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What’s going on?
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Observations
• Latent and data spaces are sort of “symmetric”
• Mappings X → 𝑧 and 𝑧 → X are sort of “symmetric”



InfoGAN (Information Maximizing GAN)
• minimize divergence between the distribution of real data and generated samples
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ADA (Adversarial Domain Adaption)
• Goal: given labeled data in source domain, classify unlabeled data in target domain.

G

G(Xsrc)

data feature

Xsrc C class



ADA (Adversarial Domain Adaption)
• Goal: given labeled data in source domain, classify unlabeled data in target domain.

G

G(Xsrc)

Xtgt

data feature

Xsrc

G(Xtgt)

C class

bad features



ADA (Adversarial Domain Adaption)
• Goal: given labeled data in source domain, classify unlabeled data in target domain.

G

G(Xsrc)

Xtgt

adversarial
training

Make G(Xtgt) and G(Xsrc) 
undistinguishable for D

Distinguish G(Xtgt) as target domain 
from G(Xsrc) as source domain

data feature

Xsrc

G(Xtgt) D 1/0

C class



ADA (Adversarial Domain Adaption)
• Goal: given labeled data in source domain, classify unlabeled data in target domain.

G

G(Xsrc)

Xtgt

adversarial
training

Make G(Xtgt) and G(Xsrc) 
undistinguishable for D

Distinguish G(Xtgt) as target domain 
from G(Xsrc) as source domain

data feature

Xsrc

G(Xtgt) D 1/0

C class



ADA (Adversarial Domain Adaption)
• Goal: given labeled data in source domain, classify unlabeled data in target domain.
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Schematic graphical model
A representation for a unified view on DGMs
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Schematic graphical model
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Reformulating DGMs
Using the schematic graphical model representation
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GANs vs VAEs
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Connecting GANs and VAEs
• GANs now also relate to the variational inference algorithm as with VAEs.

• VAEs with also include an adversarial mechanism as in GANs. The discriminator is perfect and 
degenerated, disabling generated samples to help with learning.

• The generator parameters 𝜃 are placed in the opposite directions in the two KLDs. The asymmetry of 
KLD leads to distinct model behaviors.

• For instance, GANs are able to generate sharp images but tend to collapse to one or few modes of 
the data (i.e., mode missing).

• In contrast, the KLD of VAEs tends to drive generator to cover all modes of the data distribution 
but also small-density regions (i.e., mode covering), which tend to result in blurred samples.

• GANs and VAEs have inverted latent-visible treatments of 𝑧, 𝑦 and 𝑥, since we interpret sample 
generation in GANs as posterior inference. Such inverted treatments strongly relates to the symmetry 
of the sleep and wake phases in the wake-sleep algorithm. 
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GANs vs InfoGANs
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GANs vs InfoGANs
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InfoGANs vs VAEs
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GANs vs AAEs
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GANs vs AAEs
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InfoGANs vs AAEs
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Summary
• The schematic graphical model 

representation reveals some 
interesting connections among 
different DGMs.
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Discussions
Connection to the wake-sleep algorithm
Similarities and differences between visible and latent variables



Wake-sleep (WS) algorithm
• Wake phase

• Use recognition weights for bottom-up pass

• Train the generative weights to reconstruct activities 
in each layer from the layer above

• max
𝜃

𝔼𝑞𝜆 ℎ|𝑥 𝑝𝑑 𝑥 log 𝑝𝜃 𝑥 ℎ

• Sleep phase

• Use generative weights to generate samples

• Train the recognition weights to reconstruct activities 
in each layer from the layer below

• max
𝜆

𝔼𝑝𝜃 𝑥|ℎ 𝑝 ℎ log 𝑞𝜆 ℎ 𝑥

Hidden layer 3

Hidden layer 2

Hidden layer 1

Data

recognition weights generative weights



Connections between VAEs and WS

(Wake phase) max
𝜃

𝔼𝑞𝜆 ℎ|𝑥 𝑝𝑑 𝑥 log 𝑝𝜃 𝑥 ℎ

(VAEs) max
𝜃,𝜂

𝔼𝑞𝜂 𝑧|𝑥 𝑝𝑑 𝑥 log 𝑝𝜃 𝑥 𝑧 − 𝔼𝑝𝑑 𝑥 KL 𝑞𝜂 z|𝑥 ԡ𝑝 𝑧

an additional prior regularization 
on the latent variables

also optimize the 
inference model



Connections between GANs and WS

(Sleep phase) max
𝜆

𝔼𝑝𝜃 𝑥|ℎ 𝑝 ℎ log 𝑞𝜆 ℎ 𝑥

(GANs) max
𝜙

𝔼𝑝𝜙 𝑥|𝑦 𝑝 𝑦 log 𝑞𝜙 𝑦 𝑥

max
𝜃

𝔼𝑝𝜃 𝑥|𝑦 𝑝 𝑦 log 𝑞𝜙 1 − 𝑦 𝑥

the discriminator training 
resembles the sleep phase

also optimize the generative  
model to reconstruct 1 − 𝑦



Relations of DGMs



Symmetric view on visibles and latents
• Traditional modeling approaches

• usually distinguish between latent and visible variables clearly

• treat them in very different ways

• Classic wake-sleep algorithm

• Visible and latent variables are treated in a completely symmetric manner
• Wake phase: reconstruct visible variables conditioned on latent variables

• Sleep phase: reconstruct latent variables conditioned on visible variables



Symmetric view on visibles and latents
• Sschematic graphical model representation

• Visible variables—sampled from some (empirical) data distribution

• Latent variables—sampled from some prior distribution

• Inference—mapping from visible to latent variables

• Generation—mapping from latent to visible variables

• Treating visible and latent variables as a symmetric pair

• reveals interesting connections among different DGMs

• helps with modeling and understanding

z

x

generation
model

z

x

inference 
model

𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥
𝑧~𝑓′𝑏𝑙𝑎𝑐𝑘−𝑏𝑜𝑥 (𝑥)

𝑧~𝑝𝑝𝑟𝑖𝑜𝑟 𝑥

𝑥~𝑓𝑏𝑙𝑎𝑐𝑘−𝑏𝑜𝑥 (𝑧)



Differences between visibles and latents

Visible space Latent space

high-dimensional
low-dimensional

(manifold assumption)

complex
simple

(sometimes designed to be)

implicit
(easy to draw samples from but

intractable for evaluating likelihood)

explicit
(amenable to likelihood evaluation)

can also be implicit with recent tools 
for implicit generative modeling
(e.g., adversarial losses)



Differences between visibles and latents
• Differences between visible and latent variables might be intentionally introduced.

• For feasible likelihood evaluation

• Recent tools can implicitly model distributions

• For enforcing prior beliefs on latent manifolds

• Priors should be reasonable

• But sometimes we are just guessing

• Choose the model that best suits your needs!
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