#### On Unifying Deep Generative Models Herman Dong February 20, 2020

#### Outlines

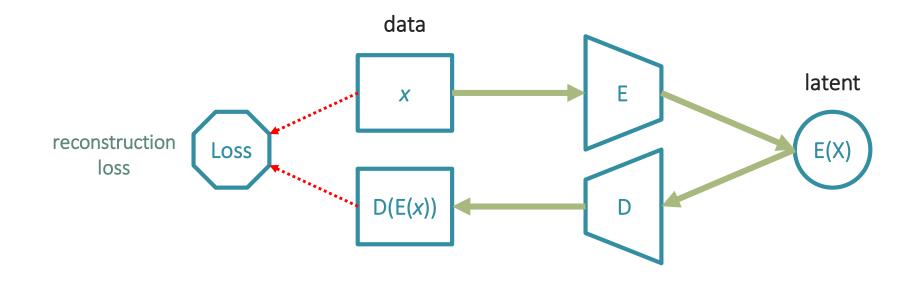
- Brief introduction on some notable DGMs (AE, VAE, GAN, AAE, InfoGAN, ADA)
- Schematic graphical model representation
- Reformulating different DGMs
- Discussions

## Some notable DGMs

A brief introduction

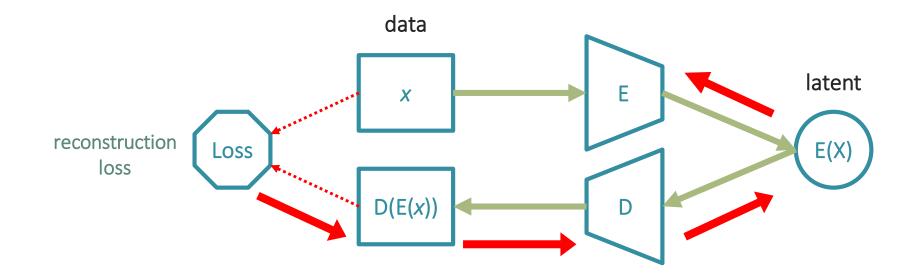
#### AE (Autoencoder)

• minimize reconstruction loss



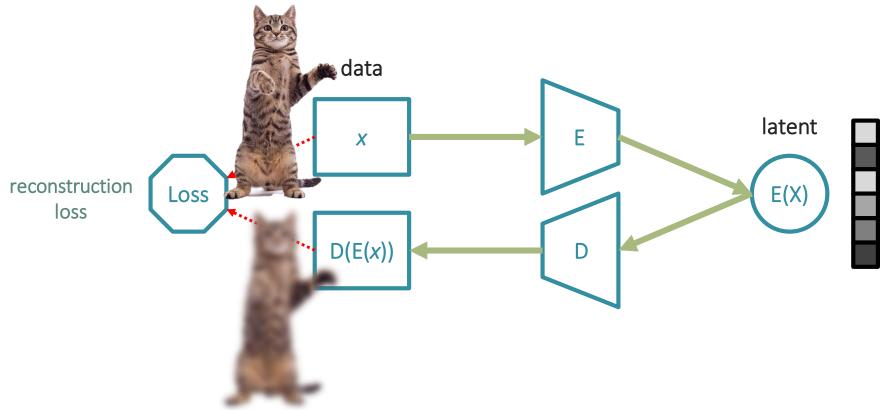
#### AE (Autoencoder)

• minimize reconstruction loss

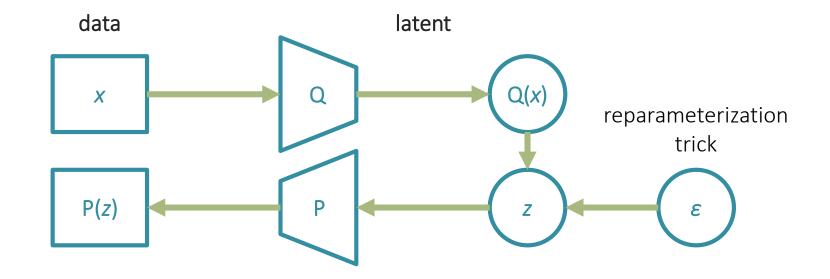


#### AE (Autoencoder)

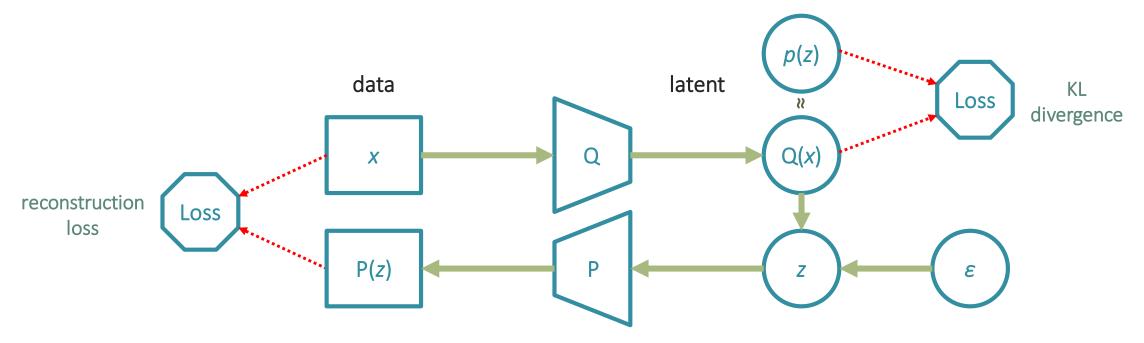
• minimize **reconstruction** loss



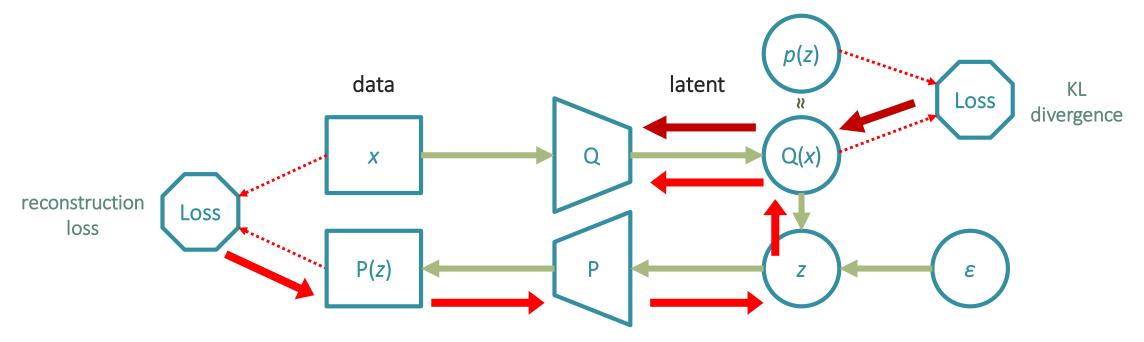
- minimize **reconstruction loss**
- minimize divergence between encoded latent distribution and prior distribution



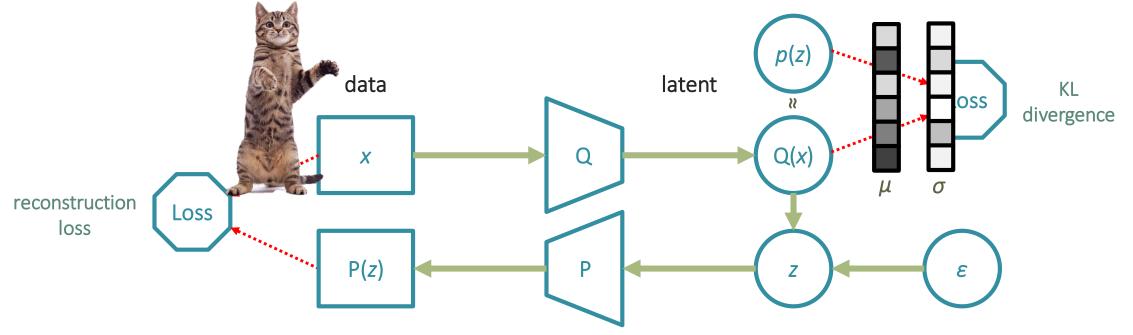
- minimize reconstruction loss
- minimize divergence between encoded latent distribution and prior distribution



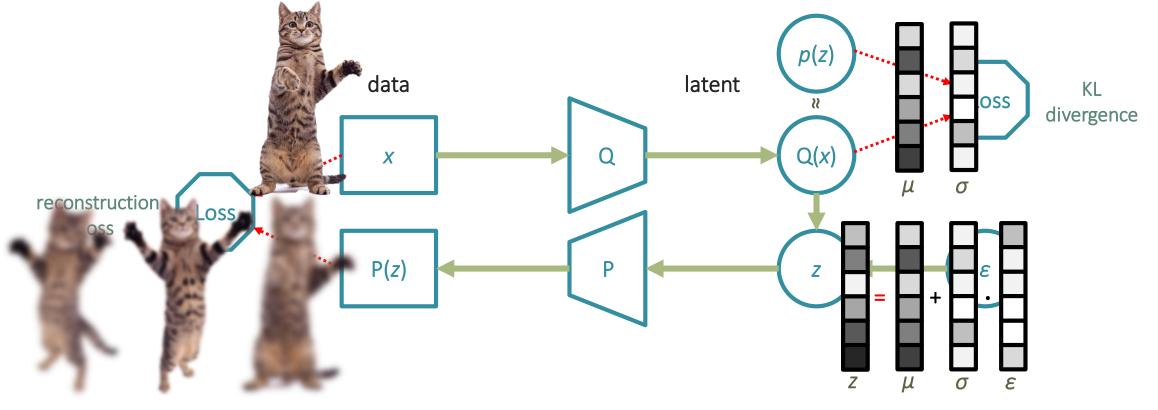
- minimize reconstruction loss
- minimize divergence between encoded latent distribution and prior distribution



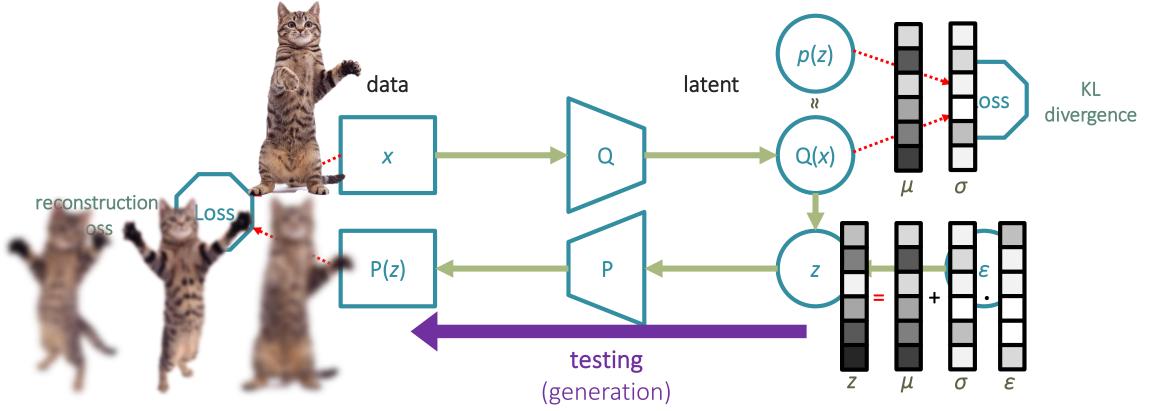
- minimize reconstruction loss
- minimize divergence between encoded latent distribution and prior distribution

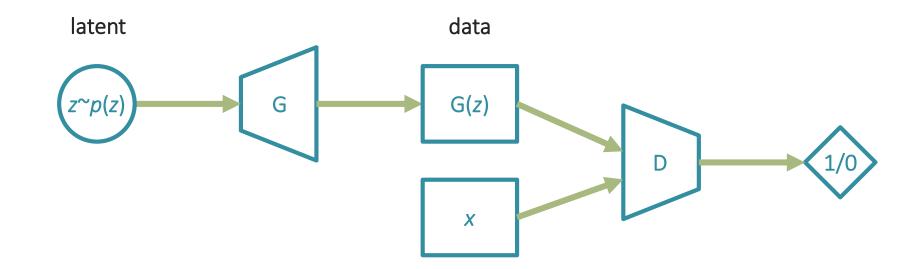


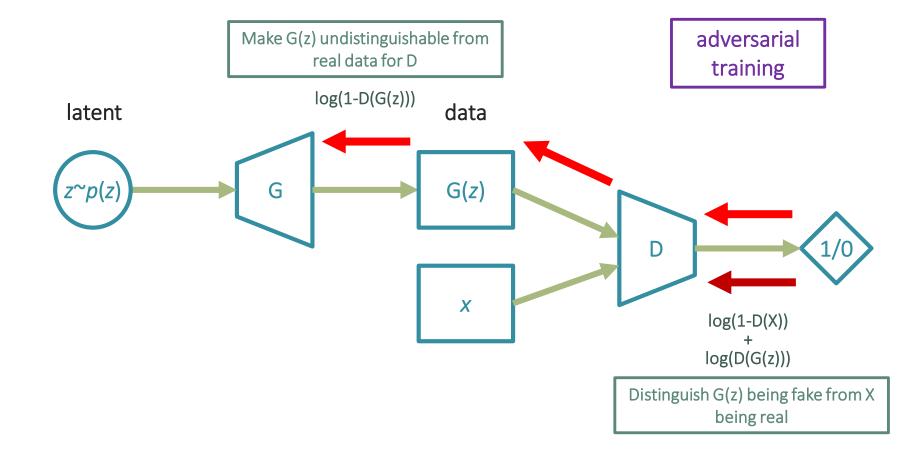
- minimize reconstruction loss
- minimize divergence between encoded latent distribution and prior distribution

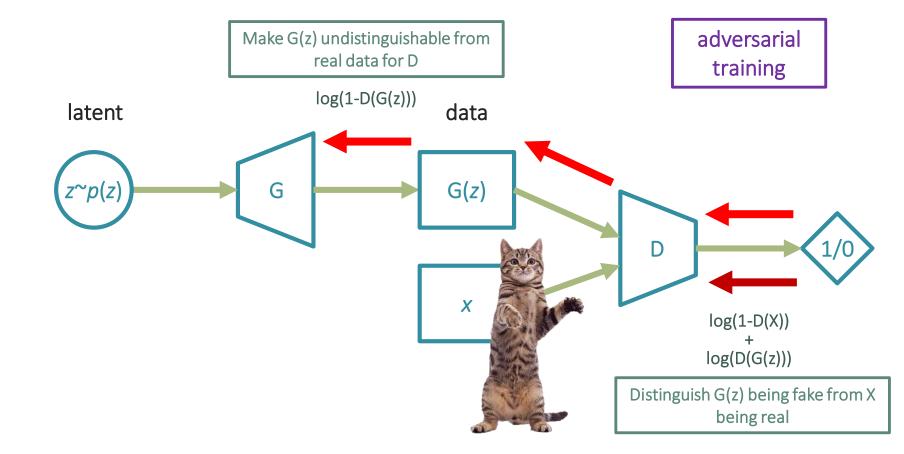


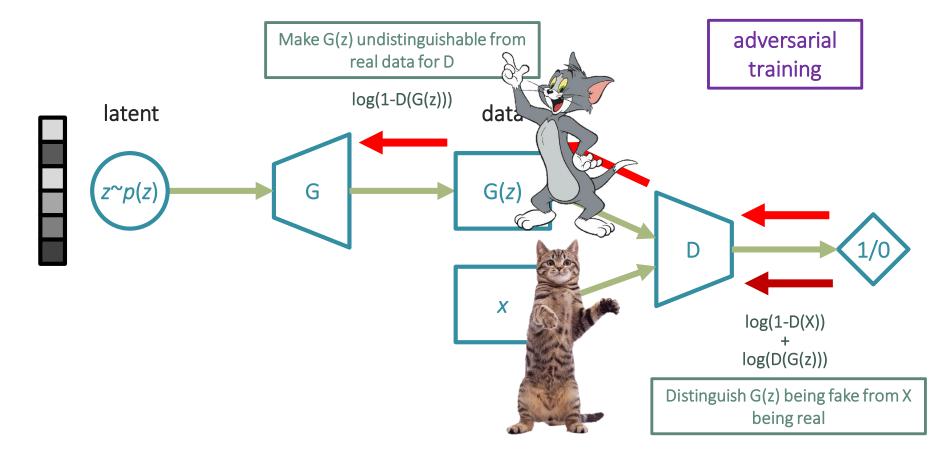
- minimize reconstruction loss
- minimize divergence between encoded latent distribution and prior distribution

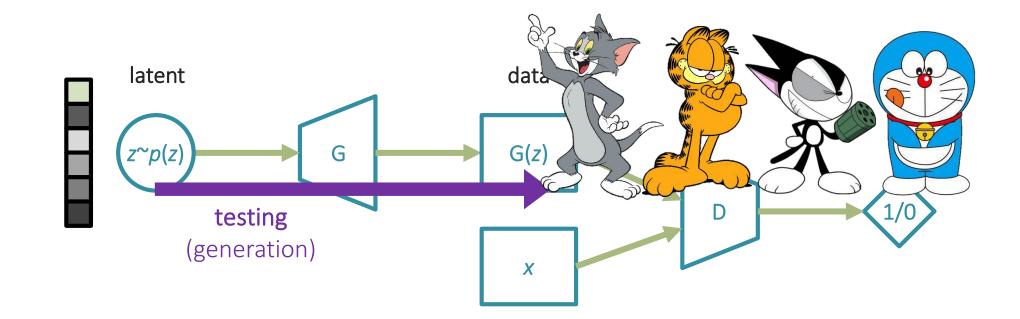






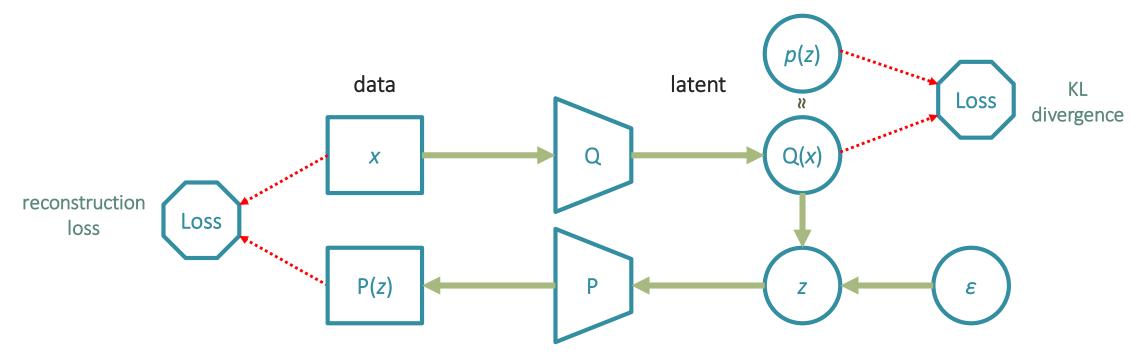






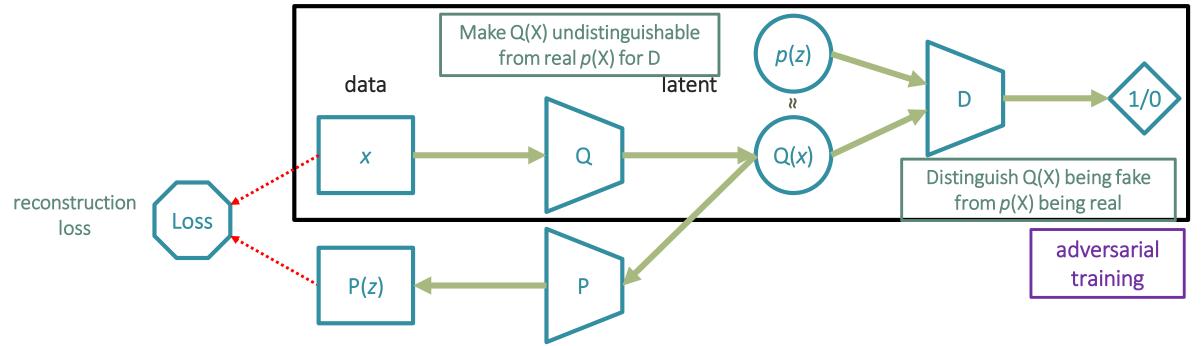
#### AAE (Adversarial Autoencoder)

- minimize reconstruction loss
- minimize divergence between encoded latent distribution and prior distribution



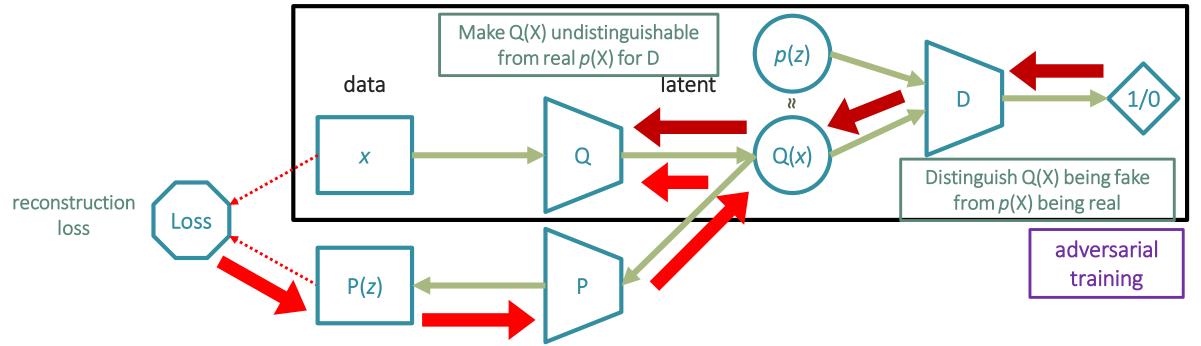
### AAE (Adversarial Autoencoder)

- minimize reconstruction loss
- minimize divergence between encoded latent distribution and prior distribution



### AAE (Adversarial Autoencoder)

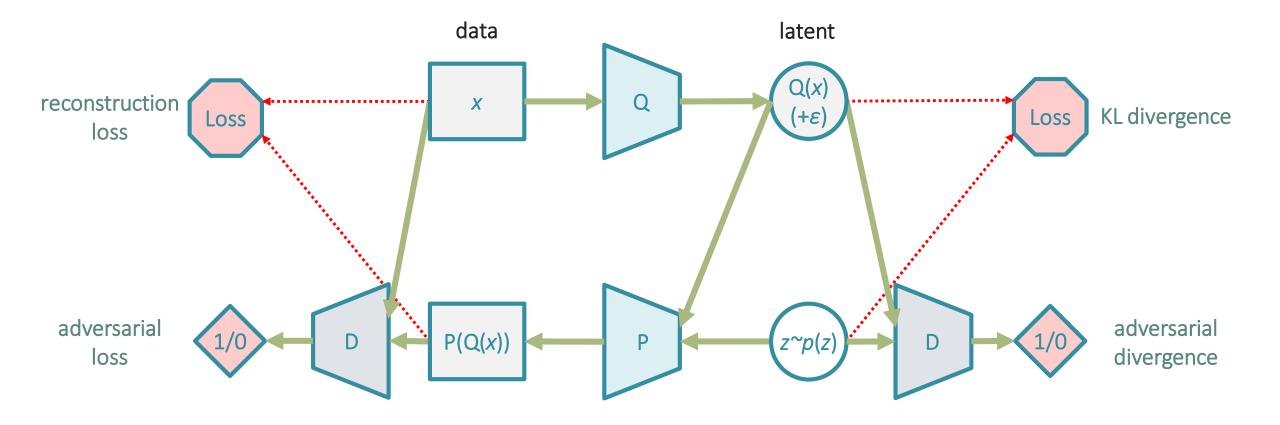
- minimize reconstruction loss
- minimize divergence between encoded latent distribution and prior distribution



#### What's going on?

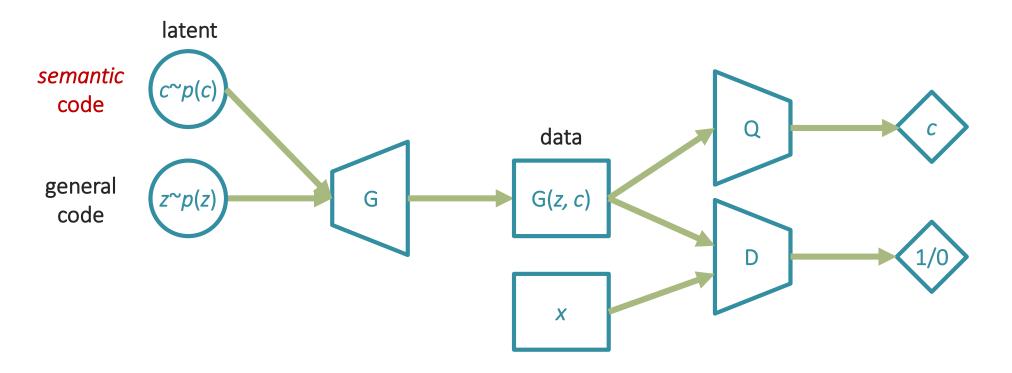
Observations

- Latent and data spaces are sort of "symmetric"
- Mappings  $X \rightarrow z$  and  $z \rightarrow X$  are sort of "symmetric"



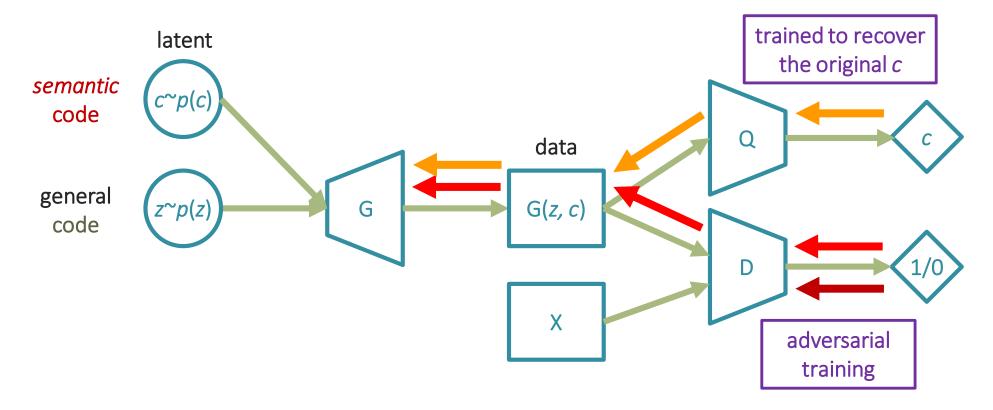
### InfoGAN (Information Maximizing GAN)

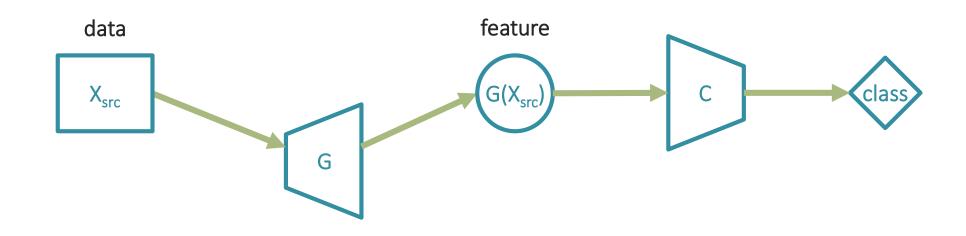
- minimize **divergence** between the distribution of real data and generated samples
- minimize reconstruction loss of the semantic code

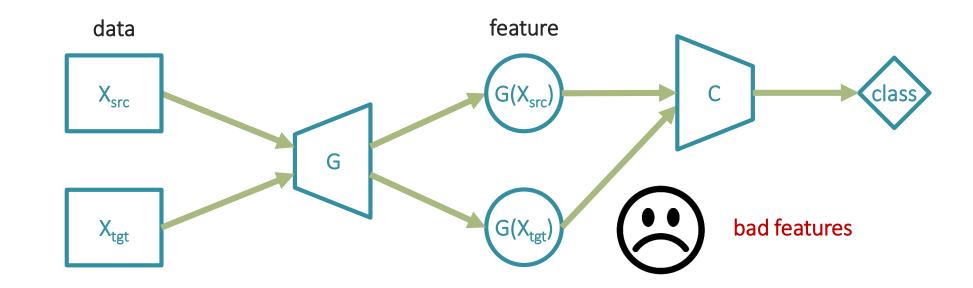


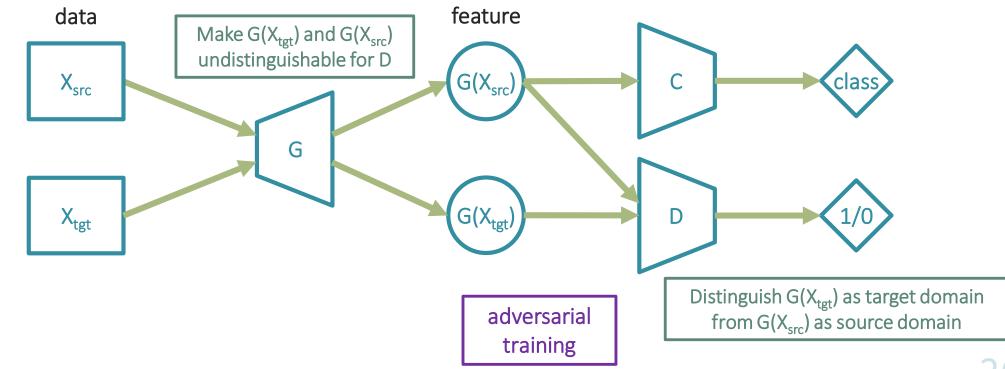
### InfoGAN (Information Maximizing GAN)

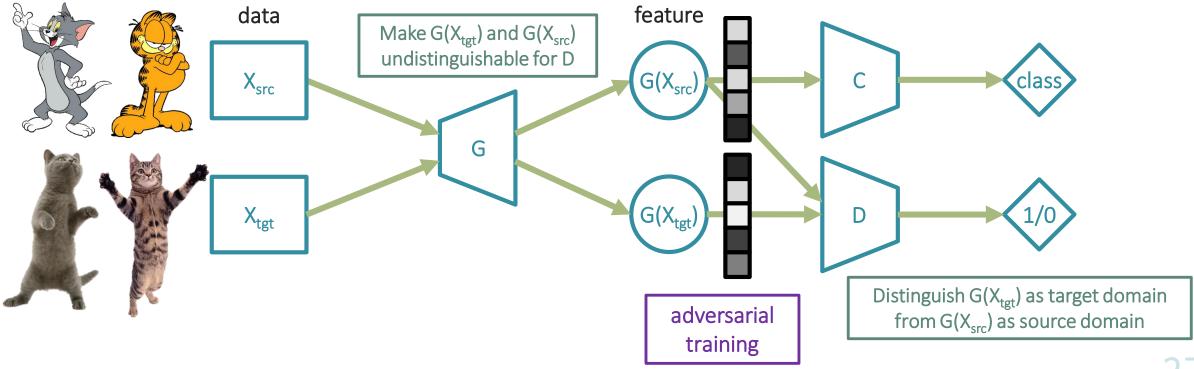
- minimize **divergence** between the distribution of real data and generated samples
- minimize **reconstruction loss** of the semantic code

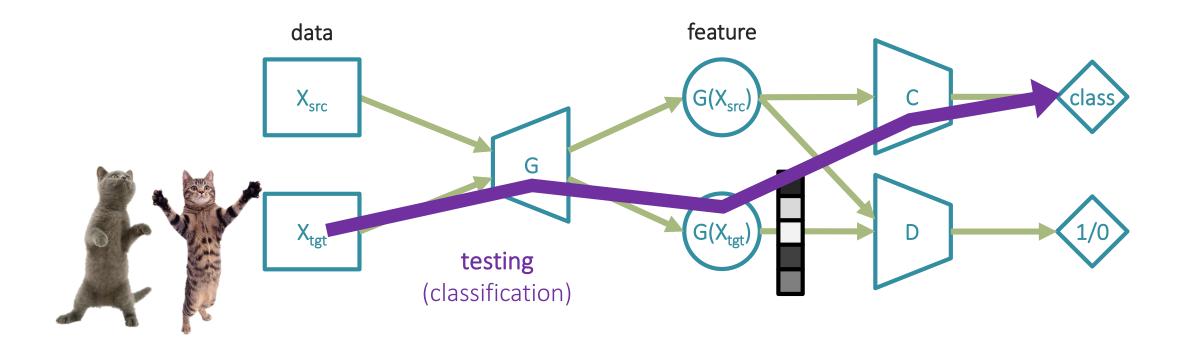










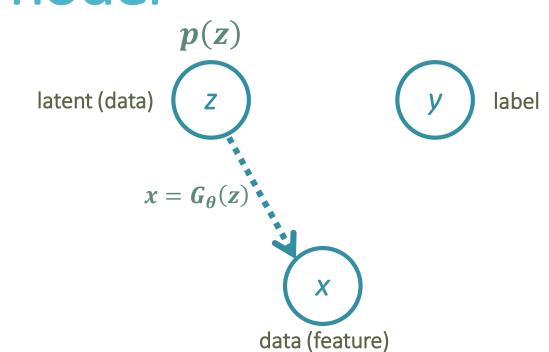


A representation for a unified view on DGMs

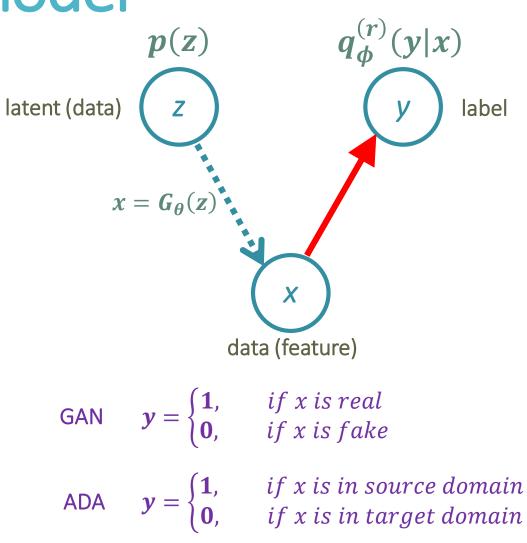




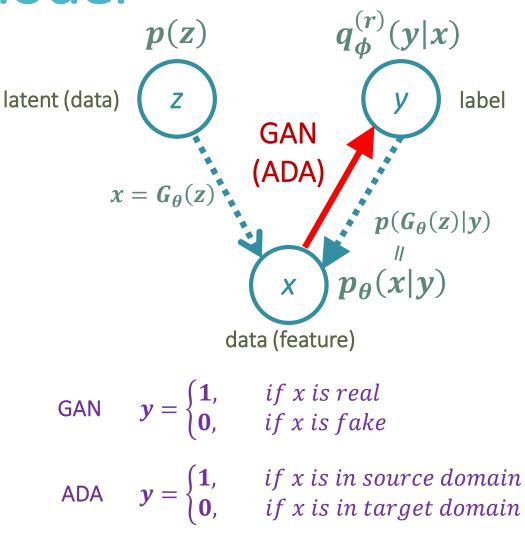
- $G_{\theta} \theta$  are parameters in generator
- $D_{\phi} \phi$  are parameters in generator



- $G_{\theta} \theta$  are parameters in generator
- $D_{\phi} \phi$  are parameters in generator
- Solid line generative process
- Dashed line inference process
- Hollow arrow deterministic transformation
- Red arrow adversarial mechanism
- $q_{\phi}^{(r)}(y|x)$  denotes both  $q_{\phi}(y|x)$  and  $q_{\phi}(1-y|x)$



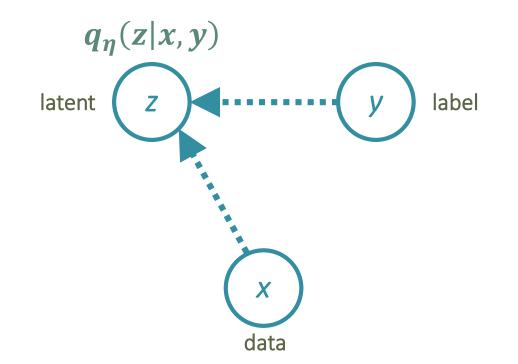
- $G_{\theta} \theta$  are parameters in generator
- $D_{\phi} \phi$  are parameters in generator
- Solid line generative process
- Dashed line inference process
- Hollow arrow deterministic transformation
- Red arrow adversarial mechanism
- $q_{\phi}^{(r)}(y|x)$  denotes both  $q_{\phi}(y|x)$  and  $q_{\phi}(1-y|x)$



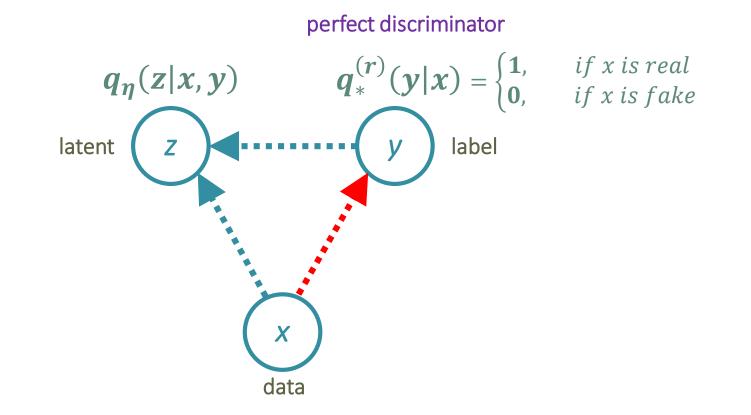
# Reformulating DGMs

Using the schematic graphical model representation

#### **Reformulating VAEs**

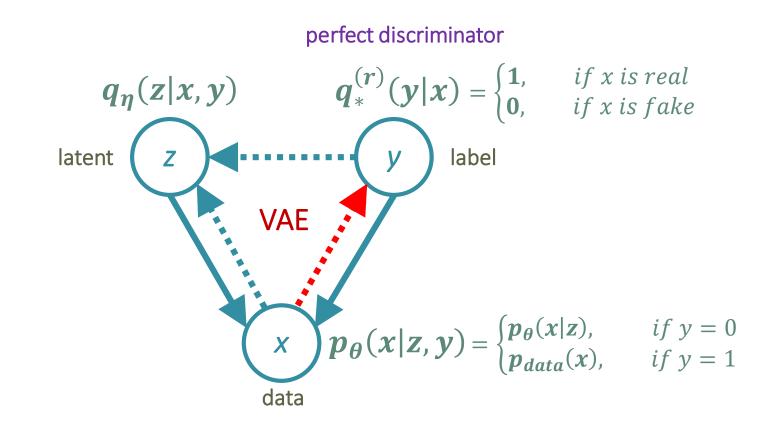


#### **Reformulating VAEs**



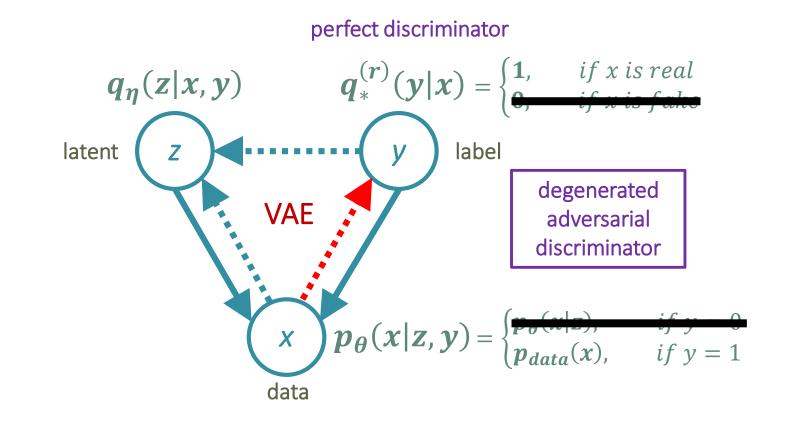
36

# **Reformulating VAEs**



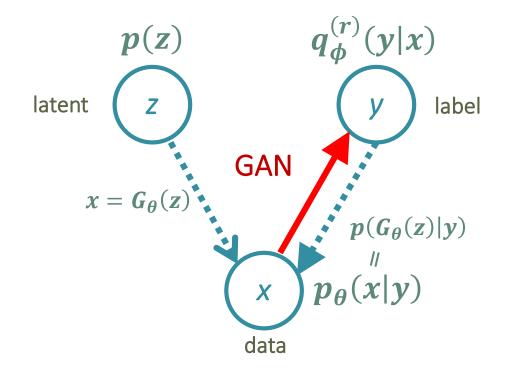
# **Reformulating VAEs**

"VAEs in our interpretation contain a **degenerated adversarial mechanism** that blocks out generated samples and only allows real examples for model training."

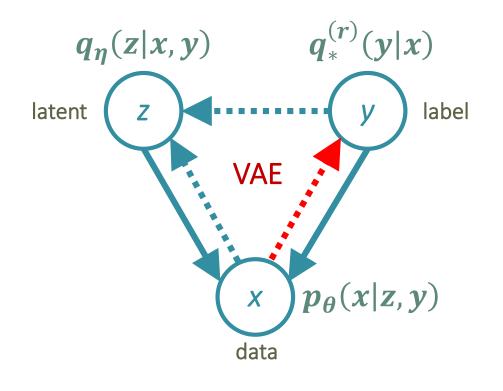


# GANs vs VAEs

"We develop a reformulation of GANs that interprets generation of samples as performing **posterior inference**, leading to an objective that resembles variational inference as in VAEs."



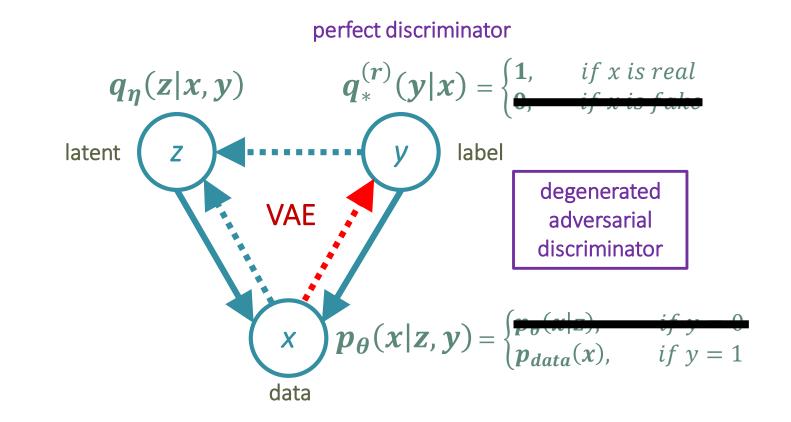
"VAEs in our interpretation contain a **degenerated adversarial mechanism** that blocks out generated samples and only allows real examples for model training."



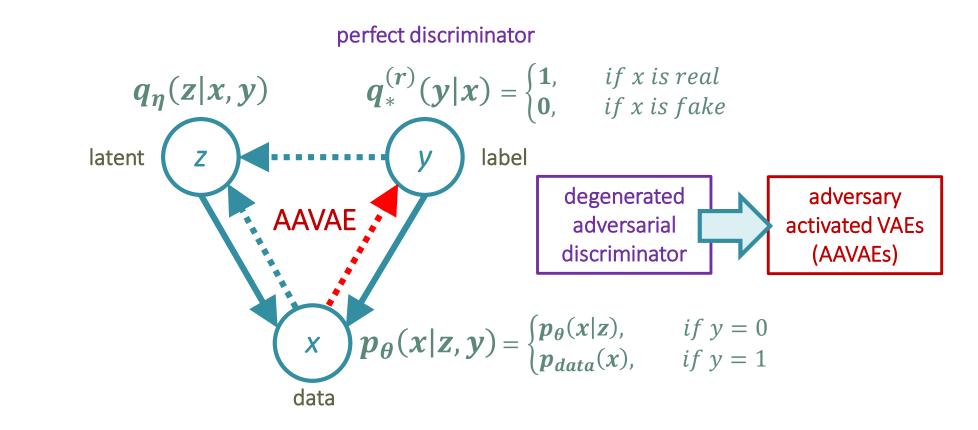
# **Connecting GANs and VAEs**

- GANs now also relate to the variational inference algorithm as with VAEs.
- VAEs with also include an adversarial mechanism as in GANs. The discriminator is perfect and degenerated, disabling generated samples to help with learning.
- The generator parameters θ are placed in the opposite directions in the two KLDs. The asymmetry of KLD leads to distinct model behaviors.
  - For instance, GANs are able to generate sharp images but tend to collapse to one or few modes of the data (i.e., **mode missing**).
  - In contrast, the KLD of VAEs tends to drive generator to cover all modes of the data distribution but also small-density regions (i.e., **mode covering**), which tend to result in blurred samples.
- GANs and VAEs have inverted latent-visible treatments of (z, y) and x, since we **interpret sample generation in GANs as posterior inference**. Such inverted treatments strongly relates to the symmetry of the sleep and wake phases in the wake-sleep algorithm.

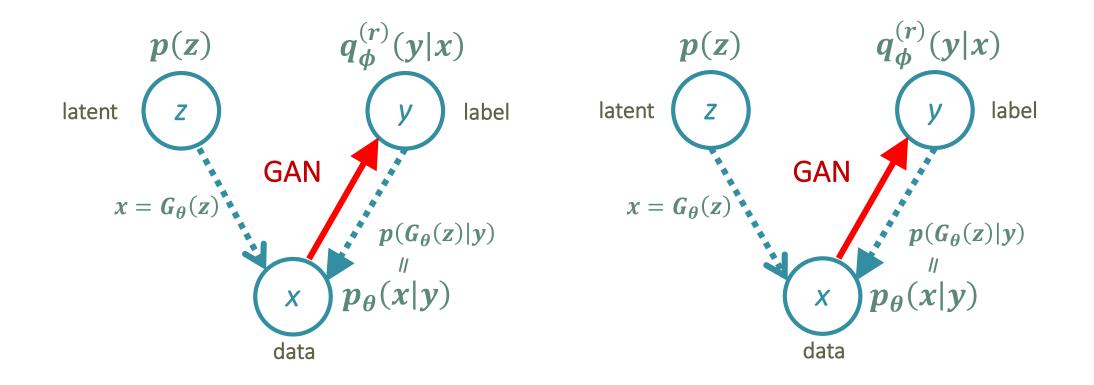
## Adversary Activated VAEs (AAVAEs)



## Adversary Activated VAEs (AAVAEs)

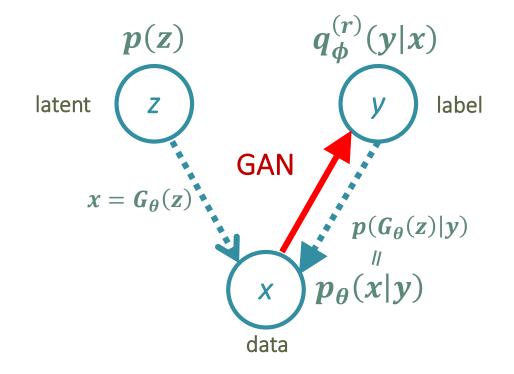


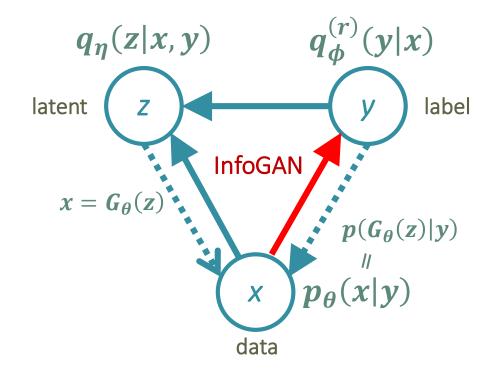
## GANs vs InfoGANs



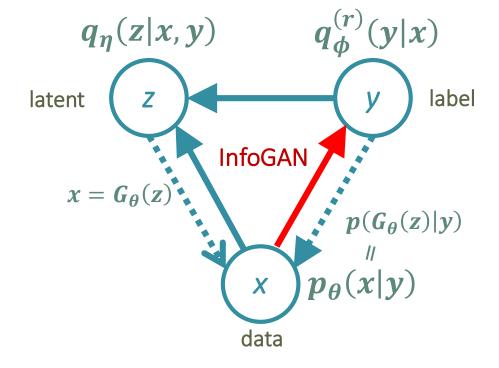
## GANs vs InfoGANs

"Schematic graphical model of InfoGAN, which, compared to GANs, adds **conditional generative process of code** *z* with distribution  $q_{\eta}(z|x, y)$ ."

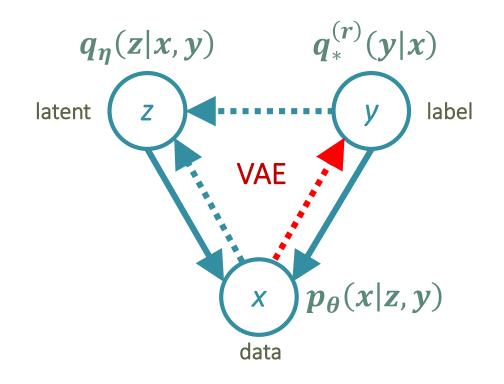




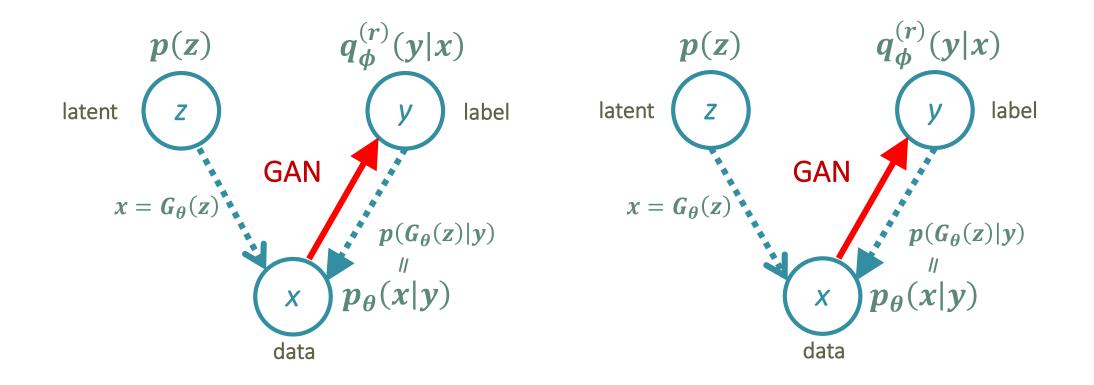
## InfoGANs vs VAEs



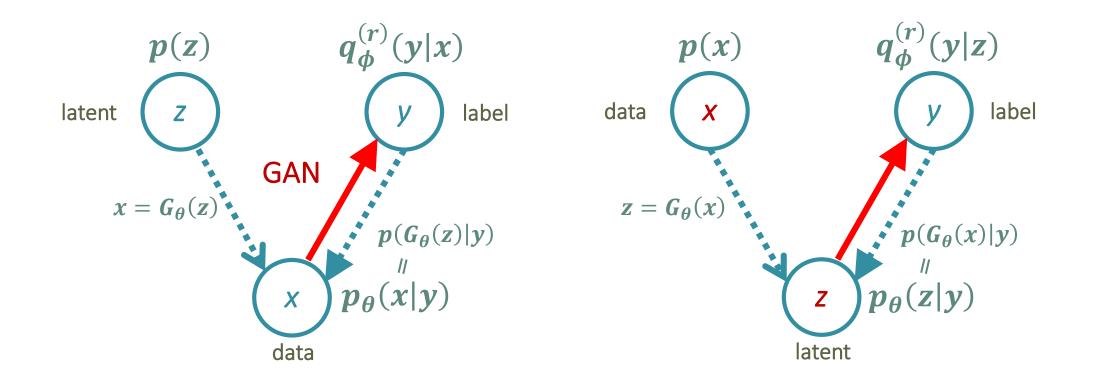
"Schematic graphical model of VAEs, which is obtained by **swapping the generative and inference processes** of InfoGAN."



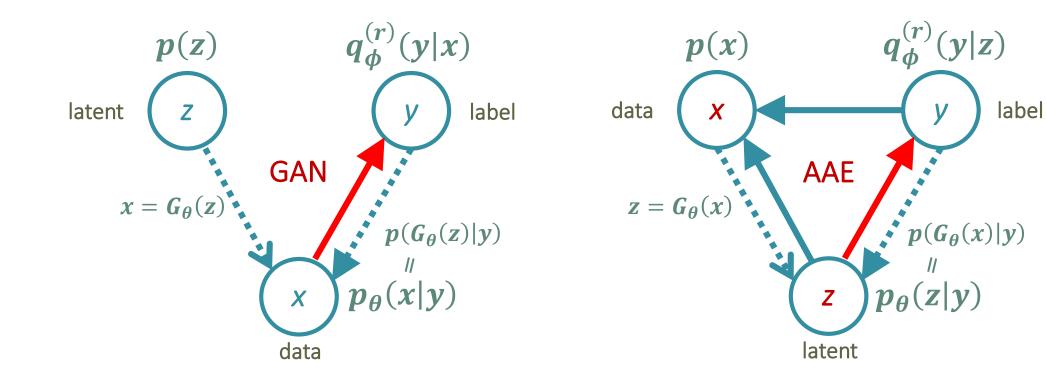
#### **GANs vs AAEs**



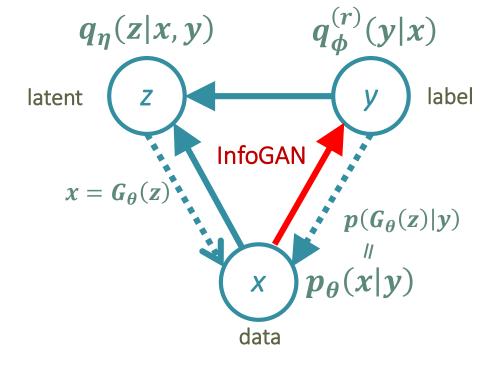
#### **GANs vs AAEs**



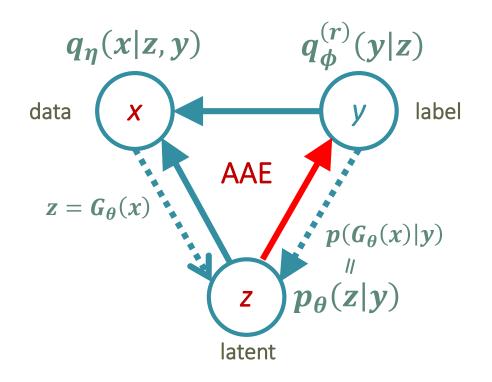
#### **GANs vs AAEs**



## InfoGANs vs AAEs

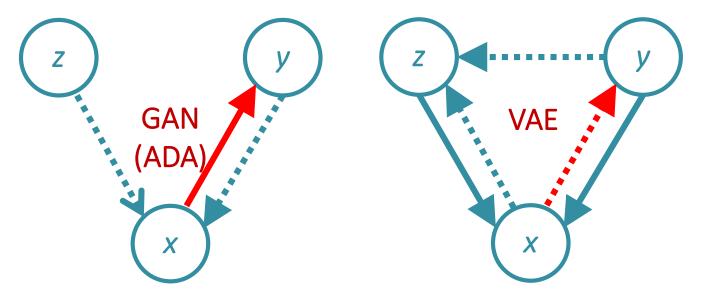


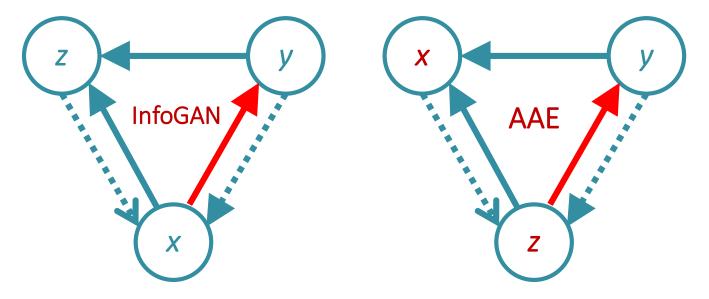
"Schematic graphical model of Adversarial Autoencoder (AAE), which is obtained by swapping data x and code z in InfoGAN."



# Summary

• The schematic graphical model representation reveals some interesting connections among different DGMs.



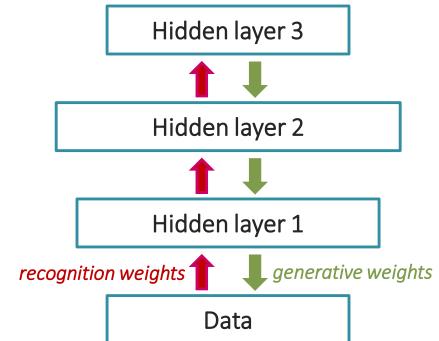


# Discussions

Connection to the wake-sleep algorithm Similarities and differences between visible and latent variables

# Wake-sleep (WS) algorithm

- Wake phase
  - Use *recognition weights* for bottom-up pass
  - Train the *generative weights* to reconstruct activities in each layer from the layer above
  - $\max_{\theta} \mathbb{E}_{q_{\lambda}(h|x)p_{d}(x)}[\log p_{\theta}(x|h)]$
- Sleep phase
  - Use generative weights to generate samples
  - Train the *recognition weights* to reconstruct activities in each layer from the layer below
  - $\max_{\lambda} \mathbb{E}_{p_{\theta}(x|h)p(h)}[\log q_{\lambda}(h|x)]$



### Connections between VAEs and WS

(Wake phase)  

$$\max_{\theta} \mathbb{E}_{q_{\lambda}(h|x)p_{d}(x)}[\log p_{\theta}(x|h)]$$
(VAEs)  

$$\max_{\theta,\eta} \mathbb{E}_{q_{\eta}(z|x)p_{d}(x)}[\log p_{\theta}(x|z)] - \mathbb{E}_{p_{d}(x)}[\mathrm{KL}(q_{\eta}(z|x)||p(z))]$$
also optimize the inference model an additional prior regularization on the latent variables

## **Connections between GANs and WS**

(Sleep phase)  $\max_{\lambda} \mathbb{E}_{p_{\theta}(x|h)p(h)}[\log q_{\lambda}(h|x)]$ 

(GANs)

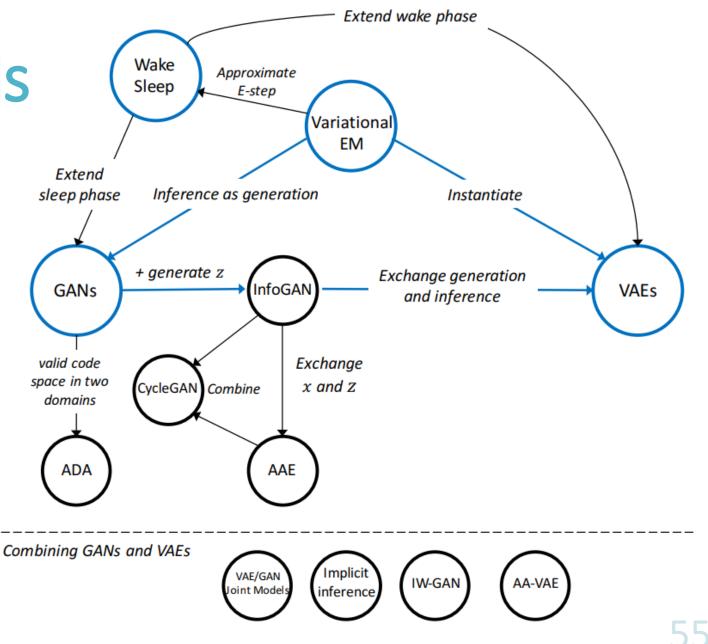
the discriminator training resembles the sleep phase

also optimize the generative model to reconstruct 1 - y

$$\max_{\theta} \mathbb{E}_{p_{\theta}(x|y)p(y)} \left[ \log q_{\phi}(1-y|x) \right]$$

 $\max_{\phi} \mathbb{E}_{p_{\phi}(x|y)p(y)} \left[ \log q_{\phi}(y|x) \right]$ 

# **Relations of DGMs**

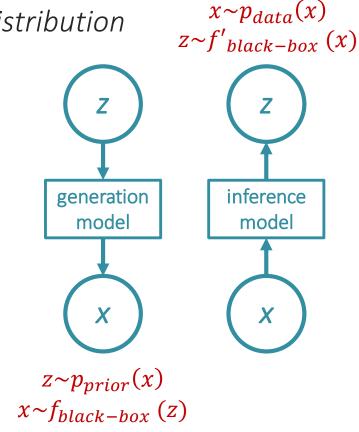


# Symmetric view on visibles and latents

- Traditional modeling approaches
  - usually distinguish between latent and visible variables clearly
  - treat them in very different ways
- Classic wake-sleep algorithm
  - Visible and latent variables are *treated in a completely symmetric manner* 
    - Wake phase: reconstruct visible variables conditioned on latent variables
    - Sleep phase: reconstruct latent variables conditioned on visible variables

# Symmetric view on visibles and latents

- Sschematic graphical model representation
  - Visible variables—sampled from some (empirical) data distribution
  - Latent variables—sampled from some prior distribution
  - **Inference**—mapping from visible to latent variables
  - **Generation**—*mapping from latent to visible variables*
- Treating visible and latent variables as a symmetric pair
  - reveals interesting connections among different DGMs
  - helps with modeling and understanding



# Differences between visibles and latents

| Visible space                                                                               | Latent space                                                                                             |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| high-dimensional                                                                            | <b>low-dimensional</b><br>(manifold assumption)                                                          |
| complex                                                                                     | <b>simple</b><br>(sometimes designed to be)                                                              |
| <b>implicit</b><br>(easy to draw samples from but<br>intractable for evaluating likelihood) | <b>explicit</b><br>(amenable to likelihood evaluation)                                                   |
|                                                                                             | can also be implicit with recent tools<br>for implicit generative modeling<br>(e.g., adversarial losses) |

# Differences between visibles and latents

- Differences between visible and latent variables might be *intentionally introduced*.
- For feasible likelihood evaluation
  - Recent tools can implicitly model distributions
- For enforcing prior beliefs on latent manifolds
  - Priors should be reasonable
  - But sometimes we are just guessing
- Choose the model that best suits your needs!

## References

- Z. Hu, Z. Yang, R. Salakhutdinov and E. P. Xing, "On unifying deep generative models," ICLR, 2018.
- D. P. Kingma and M. Welling, "Auto-Encoding Variational Bayes," ICLR, 2014.
- I. J. GoodFellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio, "Generative Adversarial Nets," *NeurIPS*, 2014.
- A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow and B. Frey, "Adversarial Autoencoders," ICLR, 2016.
- X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever and P. Abbeel, "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets," *NeurIPS*, 2016.
- G. E. Hinton, P. Dayan, B. J. Frey and R. M. Neal, "The wake-sleep algorithm for unsupervised neural networks," *Science*, 1995.