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- Generative Adversarial Networks (GAN[1])
- Wasserstein GANs (WGAN[2])

- Lipschitz Regularization
- Spectral Normalization (SN-GANJ3])
- Gradient Penalties (WGAN-GP[4], DRAGAN][5], GAN-GPJ6])

- What is critical in GAN training?



Generative Adversarial Networks




L
Generative Adversarial Networks (GANSs)

- Two-player game between the discriminator D and the generator G

(to assign real data a 1) (to assign fake data a 0)
JP(@D,6)=-{ E [logD@)]|-| E [log(1- D())]
X~Pdata Z~Pz
v v v
data distribution prior distribution fake data

J9G) = E [10g (1 - D(G(z)))]

(to make D assign generated data a 1)



Original Algorithm

(Goodfellow et. al [1])

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of

steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(), ..., (™)} from noise prior p, (2).
e Sample minibatch of m examples {z(!),... (™} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

vgd% Zm: log D () +1og (1= D (G (2)))]

i=1

end for
e Sample minibatch of m noise samples {z1), ..., z(™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.




Original Convergence Proof

(one of)
Proposition 1. For G ﬁxe%e optimal discriminator D is

For a finite data set X, we only have

1, x€EX
DE(:}B) — Pdata(%) Pdata = {0, otherwise
Pdata (-’B) + Pg (:I:) T

hard to optimize
(may need density estimation)

usually not the case

/”
Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator

is allowed to reach its optimum given G, and Dg Is updated so as to improve the criterion
B 108 D ()] + Egry, llog(1 — D ()] l usually not the case

then p, converges 10 Piara if the criterion can be easily improved



Minimax and Non-saturating GANs

JP)(D,6)=—- E [logD(x)]— ZEEpZ [log (1 - D(G(Z)))]

X~Pdata

Minimax: J9(G) = E log (1 - D(6(2))),

Non-saturating: /(@ (G) = —ZE [log (D(G (z)))] (used in practice)

(won’t stop training when D is stronger)



Comparisons of GANs

Less training difficulties
at the initial stage when
G can hardly fool D

Generator cost
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10

(Goodfellow [7])
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Wasserstein GANs




Wasserstein Distance (Earth-Mover Distance)

W(Pr; IP)H) — inf IE(x,y)~y[”x o y”]
YEH(PTIPQ)

Theorem 1. Let P, be a fized distribution over X. Let Z be a random wariable
(e.g Gaussian) over another space Z. Let g : Z x RY — X be a function, that will

be denoted gg(z) with z the first coordinate and 6 the second. Let Py denote the
distribution of go(Z). Then,

can be optimized easier

1. If g is continuous in 6, so is W (P,.,Py). /

2. If g is locally Lipschitz and satisfies reqularity assumption 1, then W (PP, Pg)
is_continuous_everywhere, and differentiable_almost everywhere.

3. Statements 1-2 are false for the Jensen-Shannon divergence JS(P,.,Pg) and
all the KLs.
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Kantorovich-Rubinstein duality

- Kantorovich-Rubinstein duality

W(P,, Py) = ||]§|l|1_21 x~P; 1f ()] — Ex-pg Lf ()]

v

all the 1-Lipschitz functions f: X - R

- Definition A function f:R — R is called Lipschitz continuous if

K €R  s.t. vxl,xz ER |f(x1) f(xz)l < lel _le

]
a8
8 *
a8 ‘o’
.
a

"0 0"
* *
* *
* *
* *
* . ‘0
* *
L R 4 /
*
Q .
0’ ’0
* .
* *
* *
* *
* *
* *

*
* *
> *
* 0’



L
Wasserstein GAN

- Key: use a NN to estimate Wasserstein distance (and use it as critics for G)

JP)(D,G)=—- E [D(x)]—zppz[D(G(z))]

X~Pdata
JO©6) = ] ppz[D(G(z))]

- Original GAN (non-saturating)

JP)(D,6)=—- E [logD(x)]— Z"I’%z [log (1 - D(G(Z)))]

X~Pdata

1O = — JE [108 (D(G(Z)))]
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L
Wasserstein GAN

- Problem: such NN needs to satisfy a Lipschitz constraint

- Global regularization
- weight clipping - original WGAN

- spectral normalization > SNGAN

- Local regularization
- gradient penalties > WGAN-GP

13



Lipschitz Regularization




L
Weight Clipping

- Key: clip the weights of the critic into [—c, c]
(Gulrajani et. al [4])

——  Weight clipping (¢ = 0.001) _ _
107 —— Weight clipping (c = 0.01) —p gradient exploding

—— Weight clipping (c = 0.1) l

A X
_ gt
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10 !
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Spectral Normalization

- Key: constraining the spectral norm of each layer

- For each layer g: h;,, = h,,;, by definition we have
lgllLip = supa(Vg(h),

where

Ah
g(4) = max” I = max ||Ah]||,

h=0 | k||, lh],<1
T T —

spectral norm _
the largest singular value of A
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Spectral Normalization
- For a linear layer g(h) = Wh, llgll.i, = sup(Vg(h)) = supa (W) =[ow)]

- For typical activation layers a(h),

lllall,p = 1| for ReLU, LeakyRelLU
lall,;, = K for other common activation layers (e.g. sigmoid, tanh)

- With the inequality
1f1 o folleip < Ifilleip - If2llip,

we now have

layer 1 layer L T
A A

1 llip < Walligp - Naglliy = Welligp - ol o | | o)

T 1 1 1 |

linear activation linear activation 17




Spectral Normalization

- Spectral normalization

1.20 | | | (Miyato Iet. al [3])
1/ . — — conv0 — conv3d  —— convs
WSN (W) O'(W) 1.15 — convl — convd — convé||
: —  conv2

(W: weight matrix)

- Now we have |[|f||.;, <1 anywhere

- Fast approximation of a(W) using

power iteration method (see the 0.95 . . . .
0 2000040000 60000 80000100000

paper) update
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Gradient Penalties

- Key: punish the critic discriminator when it violate the Lipschitz constraint
- But it's impossible to enforce punishment anywhere

Ez-p, [UIVeD ()l — 1)

e

punish it when the gradient make the gradient
ﬁ
norm get away from 1 norm stay close to 1

- Two common sampling approaches for X

WGAN-GP P; = aP, + (1 — a)P; — between data and model distribution

DRAGAN ch‘ — a]Px + (1 - a)]P)noise —p around data distribution

a~U[0,1]
19



S A B
WGAN-GP

between data and
model distribution

Pf — C([P)x + (1 —C()[P)g —>

(Gulrajani et. al [4])
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S A B
DRAGAN

P = alP, + (1-— a)IP)noise ==p around data distribution

(Fedus et. al [6])

: oy
GAN 1 @)
WGAN-GP
DRAGAN
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What is critical in GAN training?




theoretically, only minimax GAN may

Why |S WGAN more Stable? suff(ir from grgdieht vanishing

— GAN cost (theory)

—50} i
— GAN cost (practice)
ML cost (Goodfellow [7])
539 02 04 06 08 1.0
Discri t le

the properties of the underlying divergence that is being optimized

or

the Lipschitz constraint
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Com pansons non-saturfting GAN

gradient penalties
(Kodali et. al [5])
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Why is WGAN more stable?

properties of the underlying divergence that is being optimized
or

Why >
Lipschitz constraint
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(Recap) Original Convergence Proof

.re . ... . For a finite data set X, we only have
Proposition 1. For G fixed, the optimal discriminator D is Y

1, x€EX
DE(&:) — Pdata(%) Pdata = {O, otherwise
Pdata (33) + Pg (:B) i

hard to optimize
(may need density estimation)

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and p, is updated so as to improve the criterion

Eerpi (108 DG ()] 4+ Egrp, [log(1 — D ()]

then Pqg converges 10 Ddata
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From a Distribution Estimation Viewpoint (my thougnts)

Unregularized Locally regularized Globally regularized

smoother critics
« give a more stable guidance to the generator
- alleviate mode collapse issue 27



Open Questions

- Gradient penalties
- are usually too strong in WGAN-GP
- may create spurious local optima
- improved-improved-WGAN [8]
- Spectral normalization
- may impact the optimization procedure?

- can be used as a general regularization tool for any NN?

28



References

[1] lan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio, “Generative Adversarial Networks,” in Proc. NIPS, 2014.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou, “Wasserstein Generative Adversarial Networks,” in Proc.
ICML, 2017.

[3] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida, “Spectral Normalization for Generative
Adversarial Networks,” in Proc. ICLR, 2018.

[4] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville, “Improved training of
Wasserstein GANs,” In Proc. NIPS, 2017.

[5] Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira, “On Convergence and Stability of GANs,” arXiv
preprint arXiv:1705.07215, 2017.

[6] William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M. Dai, Shakir Mohamed, and lan Goodfellow,
“Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence At Every Step,” in Proc. ICLR,
2017.

[7] lan J. Goodfellow, “On distinguishability criteria for estimating generative models,” in Proc. ICLR, Workshop
Track, 2015.

[8] Xiang Wei, Boqing Gong, Zixia Liu, Wei Lu, and Ligiang Wang, “Improving the Improved Training of Wasserstein

GANSs: A Consistency Term and Its Dual Effect,” in Proc. ICLR, 2018. 29



Thank you for your attention!




