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• What is critical in GAN training?
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Generative Adversarial Networks



Generative Adversarial Networks (GANs)

• Two-player game between the discriminator D and the generator G

𝐽 𝑫 𝐷, 𝐺 = − 𝔼
𝑥~𝑝𝑑𝑎𝑡𝑎

log𝐷 𝑥 − 𝔼
𝑧~𝑝𝑧

log 1 − 𝐷 𝐺 𝑧

𝐽 𝑮 𝐺 = 𝔼
𝑧~𝑝𝑧

log 1 − 𝐷 𝐺 𝑧

(to assign real data a 1) (to assign fake data a 0)

fake data

(to make D assign generated data a 1)
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data distribution prior distribution



Original Algorithm
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(Goodfellow et. al [1])



Original Convergence Proof

For a finite data set 𝑿, we only have

𝒑𝒅𝒂𝒕𝒂 = ቊ
𝟏, 𝒙 ∈ 𝑿
𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

(may need density estimation)

hard to optimize

if the criterion can be easily improved

usually not the case

usually not the case
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(one of)



Minimax and Non-saturating GANs

𝐽 𝑫 𝐷, 𝐺 = − 𝔼
𝑥~𝑝𝑑𝑎𝑡𝑎

log𝐷 𝑥 − 𝔼
𝑧~𝑝𝑧

log 1 − 𝐷 𝐺 𝑧

Minimax: 𝐽 𝑮 𝐺 = 𝔼
𝑧~𝑝𝑧

log 1 − 𝐷 𝐺 𝑧

Non-saturating: 𝐽 𝑮 𝐺 = − 𝔼
𝑧~𝑝𝑧

log 𝐷 𝐺 𝑧 (used in practice)

(won’t stop training when D is stronger)
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Comparisons of GANs

D is fooledD is not fooled

(non-saturating GAN)

(minimax GAN)

Less training difficulties 

at the initial stage when 

G can hardly fool D
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(Goodfellow [7])



Wasserstein GANs



Wasserstein Distance (Earth-Mover Distance)

can be optimized easier
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𝑊 ℙ𝑟 , ℙ𝜃 = in𝑓
𝛾∈Π ℙ𝑟,ℙ𝜃

𝔼 𝑥,𝑦 ~𝛾 𝑥 − 𝑦



Kantorovich-Rubinstein duality

• Kantorovich-Rubinstein duality

𝑊 ℙ𝑟 , ℙ𝜃 = sup
𝑓 𝐿≤1

𝔼𝑥~ℙ𝑟 𝑓 𝑥 − 𝔼𝑥~ℙ𝜃 𝑓 𝑥

• Definition A function 𝑓:ℜ → ℜ is called Lipschitz continuous if

∃𝐾 ∈ ℜ 𝑠. 𝑡. ∀𝑥1, 𝑥2 ∈ ℜ 𝑓 𝑥1 − 𝑓 𝑥2 ≤ 𝐾 𝑥1 − 𝑥2

all the 1-Lipschitz functions 𝒇:𝑿 → 𝕽
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 



Wasserstein GAN

• Key: use a NN to estimate Wasserstein distance (and use it as critics for G)

𝐽 𝑫 𝐷, 𝐺 = − 𝔼
𝑥~𝑝𝑑𝑎𝑡𝑎

𝐷 𝑥 − 𝔼
𝑧~𝑝𝑧

𝐷 𝐺 𝑧

𝐽 𝑮 𝐺 = 𝔼
𝑧~𝑝𝑧

𝐷 𝐺 𝑧

• Original GAN (non-saturating)

𝐽 𝑫 𝐷, 𝐺 = − 𝔼
𝑥~𝑝𝑑𝑎𝑡𝑎

log𝐷 𝑥 − 𝔼
𝑧~𝑝𝑧

log 1 − 𝐷 𝐺 𝑧

𝐽 𝑮 𝐺 = − 𝔼
𝑧~𝑝𝑧

log 𝐷 𝐺 𝑧
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Wasserstein GAN

• Problem: such NN needs to satisfy a Lipschitz constraint

• Global regularization

• weight clipping  original WGAN

• spectral normalization  SNGAN

• Local regularization

• gradient penalties  WGAN-GP
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Lipschitz Regularization



Weight Clipping

• Key: clip the weights of the critic into −𝑐, 𝑐
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gradient exploding

gradient vanishing

output input

training difficulties

(Gulrajani et. al [4])



Spectral Normalization

• Key: constraining the spectral norm of each layer

• For each layer 𝑔: 𝒉𝑖𝑛 → 𝒉𝑜𝑢𝑡, by definition we have

𝑔 𝐿𝑖𝑝 = sup
𝒉
𝜎 𝛻𝑔 𝒉 ,

where

𝜎 𝐴 ≔ max
𝒉≠0

𝐴𝒉 2

𝒉 2
= max

𝒉 2≤1
𝐴𝒉 2
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spectral norm
the largest singular value of A



Spectral Normalization

• For a linear layer 𝑔 𝒉 = 𝑊𝒉, 𝑔 𝐿𝑖𝑝 = sup
𝒉
𝜎 𝛻𝑔 𝒉 = sup

𝒉
𝜎 𝑊 = 𝜎 𝑊

• For typical activation layers 𝑎 ℎ ,

𝑎 𝐿𝑖𝑝 = 1 for ReLU, LeakyReLU

𝑎 𝐿𝑖𝑝 = 𝐾 for other common activation layers (e.g. sigmoid, tanh)

• With the inequality

𝑓1 ∘ 𝑓2 𝐿𝑖𝑝 ≤ 𝑓1 𝐿𝑖𝑝 ∙ 𝑓2 𝐿𝑖𝑝,

we now have

𝑓 𝐿𝑖𝑝 ≤ 𝑊1 𝐿𝑖𝑝 ∙ 𝑎1 𝐿𝑖𝑝 ∙∙∙ 𝑊𝐿 𝐿𝑖𝑝 ∙ 𝑎𝐿 𝐿𝑖𝑝 =ෑ

𝑙=1

𝐿

𝜎 𝑊𝑙

17linear activation

layer 1

linear activation

layer L



Spectral Normalization
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• Spectral normalization 

ഥ𝑊𝑆𝑁 𝑊 ∶=
𝑊

𝜎 𝑊

(𝑊: weight matrix)

• Now we have 𝑓 𝐿𝑖𝑝 ≤ 1 anywhere

• Fast approximation of 𝜎 𝑊 using 

power iteration method (see the 

paper)

(Miyato et. al [3])



Gradient Penalties

• Key: punish the critic discriminator when it violate the Lipschitz constraint

• But it’s impossible to enforce punishment anywhere

𝔼 ො𝑥~ℙෝ𝑥
𝛻ො𝑥𝐷 ො𝑥 2 − 1 2

• Two common sampling approaches for ො𝑥

WGAN-GP ℙ ො𝑥 = 𝛼ℙ𝑥 + 1 − 𝛼 ℙ𝑔

DRAGAN ℙ ො𝑥 = 𝛼ℙ𝑥 + 1 − 𝛼 ℙ𝑛𝑜𝑖𝑠𝑒

𝛼~𝑈 0,1
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between data and model distribution

around data distribution

punish it when the gradient 

norm get away from 1

make the gradient 

norm stay close to 1



WGAN-GP
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gradient exploding

gradient vanishing

inputoutput

with gradient penalty

ℙ ො𝑥 = 𝛼ℙ𝑥 + 1 − 𝛼 ℙ𝑔
between data and 

model distribution

(Gulrajani et. al [4])



DRAGAN
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ℙ ො𝑥 = 𝛼ℙ𝑥 + 1 − 𝛼 ℙ𝑛𝑜𝑖𝑠𝑒
around data distribution

GAN

WGAN-GP

DRAGAN

GAN

WGAN-GP

DRAGAN

(Fedus et. al [6])



What is critical in GAN training?



Why is WGAN more stable?

the properties of the underlying divergence that is being optimized

or

the Lipschitz constraint
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theoretically, only minimax GAN may 

suffer from gradient vanishing

(Goodfellow [7])



Comparisons
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GAN-GP

DRAGAN

WGAN-GP

GAN

non-saturating GAN
+

gradient penalties 
(Kodali et. al [5])



Why is WGAN more stable?

properties of the underlying divergence that is being optimized

or

Lipschitz constraint
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(Recap) Original Convergence Proof

For a finite data set 𝑿, we only have

𝒑𝒅𝒂𝒕𝒂 = ቊ
𝟏, 𝒙 ∈ 𝑿
𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

(may need density estimation)

hard to optimize
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From a Distribution Estimation Viewpoint
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Locally regularized Globally regularizedUnregularized

smoother critics

• give a more stable guidance to the generator

• alleviate mode collapse issue

(my thoughts)



Open Questions

• Gradient penalties

• are usually too strong in WGAN-GP

• may create spurious local optima

• improved-improved-WGAN [8]

• Spectral normalization

• may impact the optimization procedure?

• can be used as a general regularization tool for any NN?
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Thank you for your attention!


