Game Theory for Networks

Learning Algorithms

董皓文2016．5．2

Outline

\diamond BRD - Best Response Dynamics
\diamond RL - Reinforcement Learning
\diamond RM - Regret Matching Learning
\diamond Performance and Efficiency Comparison
\diamond Consensus Algorithm

Best Response Dynamics

\diamond Various disciplines

- Examples:
\diamond Gauss-Seidel Model
\diamond Lloyd-Max algorithm
\diamond Cournot tâtonnement
\diamond IWFA algorithms
\diamond FP algorithms

Gauss-Seidel Model

\diamond Examples

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{y_{1}}{y_{2}}
$$

iterations	$a_{11} x_{1}(t+1)+a_{12} x_{2}(t)-y_{1}=0$ Step 2 - Solve $x_{2}(t+1)$:
	$a_{21} x_{1}(t+1)+a_{22} x_{2}(t+1)-y_{2}=0$

Lloyd-Max Algorithm

\diamond Examples
\leftrightarrow Signal quantizer - choosing how to partition the source signal space into cells or regions and choosing a representative for each of them
\diamond Goal: minimize the distortion

Lloyd-Max Algorithm

\diamond Iterations
\leftrightarrow Step 1 - fix a set of regions and compute the best representatives in the sense of the distortion
\diamond Step 2 - for these representatives, one updates the regions so that the distortion is minimized

$\mathrm{n}=1$

$\mathrm{n}=2$

$\mathrm{n}=3$

$\mathrm{n}=15$

Cournat Tâtonnement

$q_{i}(1) \quad q_{i}(2) \quad q_{i}(3)$

BRD Formulation

$$
\begin{gathered}
a_{k}(t+1) \in B R_{k}[\underbrace{a_{1}(t+1), a_{2}(t+1), \ldots, a_{k-1}(t+1)}_{\text {take turns }}, \underline{a_{k}(t), \ldots a_{K}(t)}] \\
a_{k}(t+1) \in B R_{k}\left[\underline{\left.a_{-k}(t)\right]}\right. \\
\text { update simultaneously }
\end{gathered}
$$

BRD Algorithm

Algorithm 1: The BRD.

BRD Convergence

\diamond Theorems
\leftrightarrow In potential and supermodular games, the sequential BRD converges to a pure NE with probability one.
\diamond If the BRs of a strategic-form game are standard functions, them the BRD converges to the unique pure NE with probability one.

Reinforcement Learning

\diamond A player receives a numerical utility signal and updates its strategy accordingly
\diamond It's shown that feeding back to the players only the realizations of their utilities is enough to drive seemingly complex interactions to a steady state or, at least, to a predictable evolution of the state

Reinforcement Learning

$$
\mathbf{1}_{\left\{a_{k}(t)=a_{k, n}\right\}}=\left\{\begin{array}{l}
\mathbf{1}, \text { if } a_{k}(t)=a_{k, n} \\
\mathbf{0}, \text { otherwise }
\end{array}\right.
$$

$$
\pi_{k, a_{k, n}}(t+1)=\pi_{k, a_{k, n}}(t)+\lambda_{k}^{R L}(t) u_{k}(t)\left[1_{\left\{a_{k}(t)=a_{k, n}\right\}}-\pi_{k, a_{k, n}}(t)\right]
$$

$$
=\left\{\begin{array}{l}
\pi_{k, a_{k, n}}(t)+\lambda_{k}^{R L}(t) u_{k}(t)\left(1-\pi_{k, a_{k, n}}(t)\right), \text { if } a_{k}(t)=a_{k, n}(t) \\
\pi_{k, a_{k, n}}(t)-\lambda_{k}^{R L}(t) u_{k}(t) \pi_{k, a_{k, n}}(t), \text { otherwise }
\end{array}\right.
$$

$\diamond \lambda_{k}^{R L}(t)$ is a known function that regulates the learning rate of player k , where $0<\lambda_{k}^{R L}(t)<1$ and $\lambda_{k}^{R L}(t) u_{k}(t)<1$
\diamond RL algorithm usually requires a large number of iterations to converge compared to the BRD algorithm.

RM Learning

Algorithm 2: The regret-matching-learning algorithm.
initialization $\left\{\begin{array}{l}\text { set } t=0 \\ \text { initialize } \pi_{k}(0) \text { s.t. } \sum_{n=1}^{N_{k}} \pi_{k, n}(0)=1 \text { for all players } k \in \mathcal{K} \\ \text { (e.g., using a random initialization) }\end{array}\right.$
$\left\{\begin{array}{l}\text { repeat } \\ \text { for } k=1 \text { to } K \text { do } \\ \text { for } n=1 \text { to } N_{k} \text { do } \\ \text { update } r_{k, n}(t+1) \text { using }(36) \\ \text { end for }\end{array}\right.$

$$
\begin{aligned}
& \boldsymbol{r}_{\boldsymbol{k}, \boldsymbol{a}_{\boldsymbol{k}, \boldsymbol{n}}}(\boldsymbol{t}+\mathbf{1}) \\
& =\frac{\boldsymbol{1}}{\boldsymbol{t}} \sum_{\boldsymbol{t}^{\prime}=\mathbf{1}}^{\boldsymbol{t}}\left(\boldsymbol{u}_{\boldsymbol{k}}\left(\boldsymbol{a}_{\boldsymbol{k}, \boldsymbol{n}}, \boldsymbol{a}_{-\boldsymbol{k}}\left(\boldsymbol{t}^{\prime}\right)\right)-\boldsymbol{u}_{\boldsymbol{k}}\left(\boldsymbol{a}_{\boldsymbol{k}}\left(\boldsymbol{t}^{\prime}\right), \boldsymbol{a}_{-\boldsymbol{k}}\left(\boldsymbol{t}^{\prime}\right)\right)\right)
\end{aligned}
$$

iterations for $n=1$ to N_{k} do
update $\pi_{k \cdot n}(t+1)$ using (37)
end for
choose $a_{k}(t+1)$ according to the distribution $\pi_{k}(t+1)$

$$
\pi_{k, a_{k, n}}(t+1)=\frac{\left[r_{k, a_{k, n}}(t+1)\right]^{+}}{\sum_{n^{\prime}=1}^{N_{k}}\left[r_{k, a_{k, n}}(t+1)\right]^{+}}
$$ end for update $t=t+1$

until $\left|a_{k}(t)-a_{k}(t-1)\right| \leq \varepsilon$ for all $k \in \mathcal{K}$ (convergence check)

$$
[x]^{+}=\max (0, x)
$$

Comparison

\(\left.$$
\begin{array}{|cccc|}\hline & \text { BRD } & \text { RL } & \text { RM } \\
\hline \text { Action Sets } & \text { continuous or discrete } & \text { discrete } & \text { discrete } \\
\hline \text { Convergence } & \text { sufficient conditions } & \text { sufficient conditions } & \text { always } \\
\hline \text { Convergence Points } & \begin{array}{c}\text { pure NE or } \\
\text { boundary points }\end{array} & \begin{array}{c}\text { pure NE or } \\
\text { boundary points }\end{array} & \text { CCE } \\
\hline \begin{array}{c}\text { Observation } \\
\text { (typically required) }\end{array} & \text { actions of the others } & \begin{array}{c}\text { value of the utility } \\
\text { function }\end{array} & \text { actions of the others } \\
\hline \begin{array}{c}\text { Knowledge } \\
\text { (typically required) }\end{array} & \begin{array}{c}\text { utility functions and } \\
\text { action sets }\end{array}
$$ \& action sets \& utility functions and

\hline action sets\end{array}\right]\)| Convergence Speed | fast | slow |
| :---: | :---: | :---: |

Comparison - Performance

- Under different noise level, the RM algorithm has higher spectral efficiency than the RM algorithm, which is better than the BRD algorithm.
\diamond Under little noise level, the RM algorithm has almost the same spectral efficiency as the best NE does. Under higher noise level, the RM algorithm is still closed to the best NE.

Comparison - Convergence Speed

- The RL and RM algorithms require larger number of iterations to converge than the BRD algorithm does.
$\stackrel{\text { The BRD algorithm converges }}{ }$ in 10 iterations.
\diamond The RL algorithms converges in 45 iterations.
- The RM algorithms converges in 60 iterations

Consensus Algorithms

$$
a_{k}(t+1)=a_{k}(t)+\sum_{j \in \mathcal{A}_{k}} \beta_{k, j}\left(a_{j}(t)-a_{k}(t)\right)
$$

\diamond Requires a well-determined topology for the network and explicit knowledge of the actions chosen by the other players.
\diamond Assume $\forall k \in \mathcal{K}, a_{k} \in \mathbb{R}$, and the networks should be designed to operated at a given point $a^{*}=\left(a_{1}^{*}, \ldots, a_{k}^{*}\right) \in \mathbb{R}^{K}$ referred to as consensus.

Thank you for your kindly attention! Any Question?

