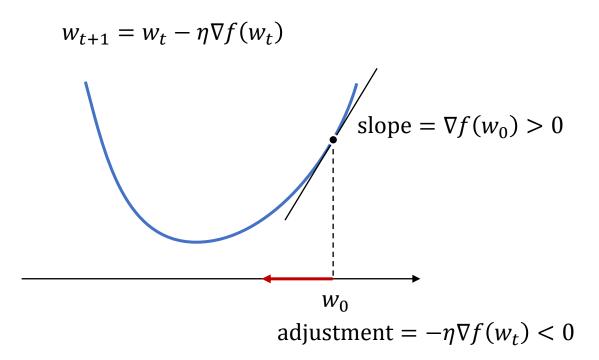
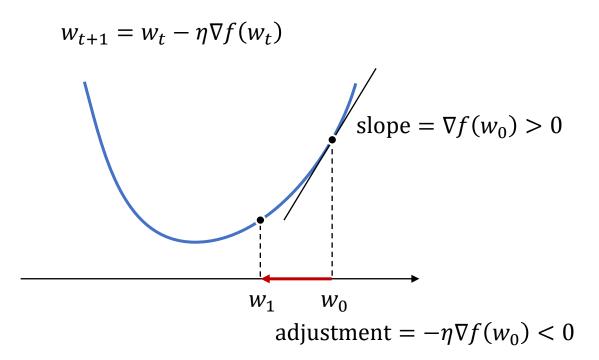

Hao-Wen Dong

Material based on Intro to Machine Learning (CSE 251A), Fall 2021

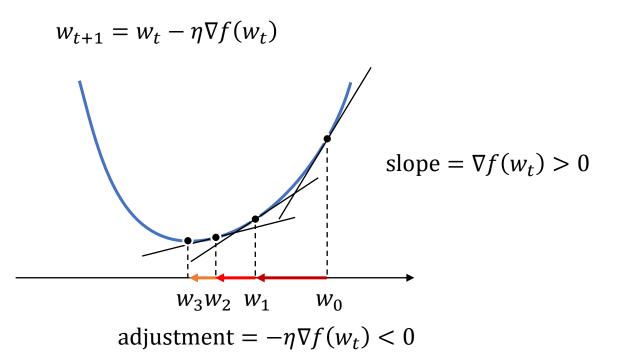

- <u>Pseudocode</u>:
 - Choose an initial weight vector w_0 and learning rate η
 - Repeat until convergence:

 $w_{t+1} = w_t - \eta \nabla f(w_t)$


- <u>Pseudocode</u>:
 - Choose an initial weight vector w_0 and learning rate η
 - Repeat until convergence:

- <u>Pseudocode</u>:
 - Choose an initial weight vector w_0 and learning rate η
 - Repeat until convergence:

- <u>Pseudocode</u>:
 - Choose an initial weight vector w_0 and learning rate η
 - Repeat until convergence:


- <u>Pseudocode</u>:
 - Choose an initial weight vector w_0 and learning rate η
 - Repeat until convergence:

 $w_{t+1} = w_t - \eta \nabla f(w_t)$ $slope = \nabla f(w_1) > 0$ $w_2 \ w_1 \ w_0$ $adjustment = -\eta \nabla f(w_1) < 0$

- <u>Pseudocode</u>:
 - Choose an initial weight vector w_0 and learning rate η
 - Repeat until convergence:

 $w_{t+1} = w_t - \eta \nabla f(w_t)$ $w_{t+1} = w_t - \eta \nabla f(w_t)$

- <u>Pseudocode</u>:
 - Choose an initial weight vector w_0 and learning rate η
 - Repeat until convergence:

Stochastic gradient descent

<u>Pseudocode</u>:

- Choose an initial weight vector w_0 and learning rate η
- Repeat until convergence:
 - Randomly pick a sample (*x*, *y*)
 - Update the weight

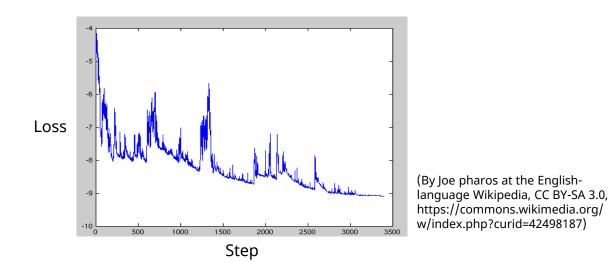
 $w_{t+1} = w_t - \eta \nabla g(w_t, x, y)$

Stochastic gradient descent

<u>Pseudocode</u>:

- Choose an initial weight vector w_0 and learning rate η
- Repeat until convergence:
 - Randomly pick a sample (*x*, *y*)
 - Update the weight

$$w_{t+1} = w_t - \eta \nabla g(w_t, x, y)$$


- Assuming $f(w_t) = \sum_{i=1}^n g(w_t, x_i, y_i)$
 - Total loss is the sum of sample loss
 - Holds for many ML problems

Stochastic gradient descent

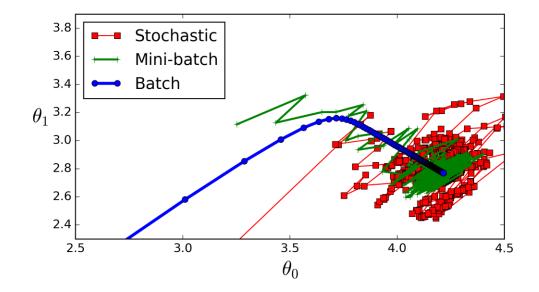
<u>Pseudocode</u>:

- Choose an initial weight vector w_0 and learning rate η
- Repeat until convergence:
 - Randomly pick a sample (*x*, *y*)
 - Update the weight

$$w_{t+1} = w_t - \eta \nabla g(w_t, x, y)$$

Mini-batch stochastic gradient descent

<u>Pseudocode</u>:


- Choose an initial weight vector w_0 and learning rate η
- Repeat until convergence:
 - Randomly pick a batch of samples $\{(x_1, y_1), (x_2, y_2), ...\}$
 - Update the weight

$$w_{t+1} = w_t - \eta \sum_{i=1}^n \nabla g(w_t, x_i, y_i)$$

- Provide better estimate of the true gradient
 - Trade off between stability and speed

Comparisons

- <u>Gradient descent</u> (batch gradient descent): batch size = N
- <u>Stochastic gradient descent</u>: batch size = 1
- <u>Mini-batch gradient descent</u>: 1 < batch size < N

