
Convexity
Hao-Wen Dong

Material based on Intro to Machine Learning (CSE 251A), Fall 2021



Definition – Convex function

• A function 𝑓:ℝ𝑑 → ℝ is convex if for all 𝑎, 𝑏 ∈ ℝ𝑑 and 0 < 𝜃 < 1,

𝑓 𝜃𝑎 + 1 − 𝜃 𝑏 ≤ 𝜃𝑓 𝑎 + 1 − 𝜃 𝑓 𝑏
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Definition – Strictly convex function
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• A function 𝑓:ℝ𝑑 → ℝ is strictly convex if for all 𝑎 ≠ 𝑏 ∈ ℝ𝑑 and 0 < 𝜃 < 1,

𝑓 𝜃𝑎 + 1 − 𝜃 𝑏 < 𝜃𝑓 𝑎 + 1 − 𝜃 𝑓 𝑏



Definition – Concave function

• A function 𝑓:ℝ𝑑 → ℝ is concave if for all 𝑎, 𝑏 ∈ ℝ𝑑 and 0 < 𝜃 < 1,

𝑓 𝜃𝑎 + 1 − 𝜃 𝑏 ≥ 𝜃𝑓 𝑎 + 1 − 𝜃 𝑓 𝑏
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Properties of a convex function

• 𝑓 is convex ⇔−𝑓 is concave
• 𝑓, 𝑔 are both convex ⇒ 𝑓 + 𝑔 is convex
• 𝑓, 𝑔 are both convex ⇒ max 𝑓, 𝑔 is convex
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Second-derivative test for convexity

• A function 𝑓:ℝ → ℝ is convex if its second derivative is nonnegative 
everywhere
• Example: 𝑓 𝑥 = 𝑥2
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Second-derivative test for convexity

• How about a multivariate function 𝑓:ℝ𝑑 → ℝ?
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Second-derivative test for convexity

• How about a multivariate function 𝑓:ℝ𝑑 → ℝ?
• A function 𝑓:ℝ𝑑 → ℝ is convex if its matrix of second derivatives is 

positive semidefinite everywhere
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First derivative of multivariate functions

• For a function 𝑓:ℝ𝑑 → ℝ, its first derivative is a vector with 𝑑 entries, 
called the gradient

∇𝑓 𝑧 =

𝜕𝑓

𝜕𝑧1
⋮
𝜕𝑓

𝜕𝑧𝑑
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First derivative of multivariate functions

• For a function 𝑓:ℝ𝑑 → ℝ, its second derivative is a 𝑑 × 𝑑 matrix, called 
the Hessian matrix

𝐻𝑓 =

𝜕𝑓

𝜕𝑧1𝜕𝑧1
⋯

𝜕𝑓

𝜕𝑧1𝜕𝑧𝑑
⋮ ⋱ ⋮
𝜕𝑓

𝜕𝑧𝑑𝜕𝑧1
⋯

𝜕𝑓

𝜕𝑧𝑑𝜕𝑧𝑑

• It’s the Jacobian matrix of ∇𝑓 𝑧
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Second-derivative test for convexity

• A function 𝑓:ℝ𝑑 → ℝ is convex if its Hessian is positive semidefinite 
everywhere

15



Positive semidefinite (PSD)

• A symmetric matrix 𝑀 is positive semidefinite if for all 𝑧 ∈ ℝ𝑑

𝑧𝑇𝑀𝑧 ≥ 0
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Positive semidefinite (PSD)

• A symmetric matrix 𝑀 is positive semidefinite if for all 𝑧 ∈ ℝ𝑑

𝑧𝑇𝑀𝑧 ≥ 0

• Note that 

𝑧𝑇𝑀𝑧 = 

𝑖,𝑗=1

𝑑

𝑀𝑖𝑗𝑧𝑖𝑧𝑗
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A hierarchy of square matrices
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Positive semidefinite (PSD)

• A symmetric matrix 𝑀 is positive semidefinite if for all 𝑧 ∈ ℝ𝑑

𝑧𝑇𝑀𝑧 ≥ 0

• Is 𝑀 =
1 1
1 1

positive semidefinite?
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Positive semidefinite (PSD)

• A symmetric matrix 𝑀 is positive semidefinite if for all 𝑧 ∈ ℝ𝑑

𝑧𝑇𝑀𝑧 ≥ 0

• Is 𝑀 =
1 1
1 1

positive semidefinite?

For any 𝑧 =
𝑧1
𝑧2

, we have

𝑧𝑇𝑀𝑧 = 𝑧1 𝑧2
1 1
1 1

𝑧1
𝑧2

= 𝑧1 + 𝑧2 𝑧1 + 𝑧2
𝑧1
𝑧2

= 𝑧1 + 𝑧2
2 ≥ 0
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Positive semidefinite (PSD)

• A symmetric matrix 𝑀 is positive semidefinite if for all 𝑧 ∈ ℝ𝑑

𝑧𝑇𝑀𝑧 ≥ 0

• Is 𝑀 =
1 2
2 1

positive semidefinite?
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Positive semidefinite (PSD)

• A symmetric matrix 𝑀 is positive semidefinite if for all 𝑧 ∈ ℝ𝑑

𝑧𝑇𝑀𝑧 ≥ 0

• Is 𝑀 =
1 2
2 1

positive semidefinite?

For any 𝑧 =
𝑧1
𝑧2

, we have

𝑧𝑇𝑀𝑧 = 𝑧1 𝑧2
1 2
2 1

𝑧1
𝑧2

= 𝑧1 + 2𝑧2 2𝑧1 + 𝑧2
𝑧1
𝑧2

= 𝑧1
2 + 5𝑧1𝑧2 + 𝑧2

2
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Positive semidefinite (PSD)

• A symmetric matrix 𝑀 is positive semidefinite if for all 𝑧 ∈ ℝ𝑑

𝑧𝑇𝑀𝑧 ≥ 0

• Is 𝑀 =
1 2
2 1

positive semidefinite?    No! z = 1
−1

is a counterexample

For any 𝑧 =
𝑧1
𝑧2

, we have

𝑧𝑇𝑀𝑧 = 𝑧1 𝑧2
1 2
2 1

𝑧1
𝑧2

= 𝑧1 + 2𝑧2 2𝑧1 + 𝑧2
𝑧1
𝑧2

= 𝑧1
2 + 5𝑧1𝑧2 + 𝑧2

2
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Positive semidefinite (PSD)

• A symmetric matrix 𝑀 is positive semidefinite if for all 𝑧 ∈ ℝ𝑑

𝑧𝑇𝑀𝑧 ≥ 0

• Is 𝑀 =
1 2
2 1

positive semidefinite?    No! z = 1
−1

is a counterexample

Recall: a matrix corresponds to a linear transformation
A geometric view of PSD: Any transformed vector 𝑀𝑧 must have a nonnegative 
scalar projection on the original vector 𝑧.

In this case, 𝑀𝑧 = 1 2
2 1

1
−1

=
−1
1

is in the opposite direction to z = 1
−1

.
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Positive semidefinite (PSD)

• A symmetric matrix 𝑀 is positive semidefinite if for all 𝑧 ∈ ℝ𝑑

𝑧𝑇𝑀𝑧 ≥ 0

• When is a diagonal matrix PSD?
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Positive semidefinite (PSD)

• A symmetric matrix 𝑀 is positive semidefinite if for all 𝑧 ∈ ℝ𝑑

𝑧𝑇𝑀𝑧 ≥ 0

• When is a diagonal matrix PSD?

Suppose we have a diagonal matrix 𝑀 = diag 𝑎1, 𝑎2, … , 𝑎𝑑 , then we have

𝑧𝑇𝑀𝑧 = 𝑧1 … 𝑧𝑑

𝑎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑎𝑑

𝑧1
⋮
𝑧𝑑

= 𝑎1𝑧1 … 𝑎𝑑𝑧𝑑

𝑧1
⋮
𝑧𝑑

= 𝑎1𝑧1
2 +⋯+ 𝑎𝑑𝑧𝑑

2
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Positive semidefinite (PSD)

• A symmetric matrix 𝑀 is positive semidefinite if for all 𝑧 ∈ ℝ𝑑

𝑧𝑇𝑀𝑧 ≥ 0

• When is a diagonal matrix PSD?    When all its elements are nonnegative

Suppose we have a diagonal matrix 𝑀 = diag 𝑎1, 𝑎2, … , 𝑎𝑑 , then we have

𝑧𝑇𝑀𝑧 = 𝑧1 … 𝑧𝑑

𝑎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑎𝑑

𝑧1
⋮
𝑧𝑑

= 𝑎1𝑧1 … 𝑎𝑑𝑧𝑑

𝑧1
⋮
𝑧𝑑

= 𝑎1𝑧1
2 +⋯+ 𝑎𝑑𝑧𝑑

2
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Second-derivative test for convexity

• A function 𝑓:ℝ𝑑 → ℝ is convex if its Hessian is positive semidefinite 
everywhere

• Is 𝑓 𝑧 = 𝑧 2 convex?
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Second-derivative test for convexity

• A function 𝑓:ℝ𝑑 → ℝ is convex if its Hessian is positive semidefinite 
everywhere

• Is 𝑓 𝑧 = 𝑧 2 convex?

𝑓 𝑧 = 𝑧 2 =

𝑖=1

𝑑

𝑧𝑖
2 ,
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Second-derivative test for convexity

• A function 𝑓:ℝ𝑑 → ℝ is convex if its Hessian is positive semidefinite 
everywhere

• Is 𝑓 𝑧 = 𝑧 2 convex?

𝑓 𝑧 = 𝑧 2 =

𝑖=1

𝑑

𝑧𝑖
2 ,

∇𝑓 𝑧 =

𝜕𝑓

𝜕𝑧1
⋮
𝜕𝑓

𝜕𝑧𝑑

=
2𝑧1
⋮
2𝑧𝑑

= 2𝑧, 𝐻𝑓 =

𝜕𝑓

𝜕𝑧1𝜕𝑧1
⋯

𝜕𝑓

𝜕𝑧1𝜕𝑧𝑑
⋮ ⋱ ⋮
𝜕𝑓

𝜕𝑧𝑑𝜕𝑧1
⋯

𝜕𝑓

𝜕𝑧𝑑𝜕𝑧𝑑

=
2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 2

= 2𝐼𝑑
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Second-derivative test for convexity

• A function 𝑓:ℝ𝑑 → ℝ is convex if its Hessian is positive semidefinite 
everywhere

• Is 𝑓 𝑧 = 𝑧 2 convex?    Yes!

𝑓 𝑧 = 𝑧 2 =

𝑖=1

𝑑

𝑧𝑖
2 ,

∇𝑓 𝑧 =

𝜕𝑓

𝜕𝑧1
⋮
𝜕𝑓

𝜕𝑧𝑑

=
2𝑧1
⋮
2𝑧𝑑

= 2𝑧, 𝐻𝑓 =

𝜕𝑓

𝜕𝑧1𝜕𝑧1
⋯

𝜕𝑓

𝜕𝑧1𝜕𝑧𝑑
⋮ ⋱ ⋮
𝜕𝑓

𝜕𝑧𝑑𝜕𝑧1
⋯

𝜕𝑓

𝜕𝑧𝑑𝜕𝑧𝑑

=
2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 2

= 2𝐼𝑑
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