# Convexity

#### Hao-Wen Dong

Material based on Intro to Machine Learning (CSE 251A), Fall 2021

$$f(\theta a + (1 - \theta)b) \le \theta f(a) + (1 - \theta)f(b)$$



$$f(\theta a + (1 - \theta)b) \le \theta f(a) + (1 - \theta)f(b)$$



$$f(\theta a + (1 - \theta)b) \le \theta f(a) + (1 - \theta)f(b)$$



$$f(\theta a + (1 - \theta)b) \le \theta f(a) + (1 - \theta)f(b)$$



$$f(\theta a + (1 - \theta)b) \le \theta f(a) + (1 - \theta)f(b)$$



#### Definition – Strictly convex function

$$f(\theta a + (1 - \theta)b) < \theta f(a) + (1 - \theta)f(b)$$

$$f(\theta a + (1 - \theta)b) \ge \theta f(a) + (1 - \theta)f(b)$$



#### Properties of a convex function

- f is convex  $\Leftrightarrow -f$  is concave
- f, g are both convex  $\Rightarrow f + g$  is convex
- f, g are both convex  $\Rightarrow \max(f, g)$  is convex

- A function  $f: \mathbb{R} \to \mathbb{R}$  is convex if its second derivative is nonnegative everywhere
  - Example:  $f(x) = x^2$

• How about a *multivariate* function  $f: \mathbb{R}^d \to \mathbb{R}$ ?

- How about a *multivariate* function  $f: \mathbb{R}^d \to \mathbb{R}$ ?
- A function  $f: \mathbb{R}^d \to \mathbb{R}$  is convex if its matrix of second derivatives is positive semidefinite everywhere

#### First derivative of multivariate functions

• For a function  $f: \mathbb{R}^d \to \mathbb{R}$ , its first derivative is a vector with d entries, called the *gradient* 

$$\nabla f(z) = \begin{bmatrix} \frac{\partial f}{\partial z_1} \\ \vdots \\ \frac{\partial f}{\partial z_d} \end{bmatrix}$$

#### First derivative of multivariate functions

• For a function  $f: \mathbb{R}^d \to \mathbb{R}$ , its second derivative is a  $d \times d$  matrix, called the *Hessian* matrix

$$H_{f} = \begin{bmatrix} \frac{\partial f}{\partial z_{1} \partial z_{1}} & \cdots & \frac{\partial f}{\partial z_{1} \partial z_{d}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial z_{d} \partial z_{1}} & \cdots & \frac{\partial f}{\partial z_{d} \partial z_{d}} \end{bmatrix}$$

• It's the Jacobian matrix of  $\nabla f(z)$ 

• A function  $f: \mathbb{R}^d \to \mathbb{R}$  is convex if its Hessian is positive semidefinite everywhere

• A symmetric matrix *M* is *positive semidefinite* if for all  $z \in \mathbb{R}^d$ 

• A symmetric matrix *M* is *positive semidefinite* if for all  $z \in \mathbb{R}^d$ 

 $z^T M z \ge 0$ 

• Note that

$$z^T M z = \sum_{i,j=1}^d M_{ij} z_i z_j$$

#### A hierarchy of square matrices



• A symmetric matrix *M* is *positive semidefinite* if for all  $z \in \mathbb{R}^d$ 

• Is 
$$M = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 positive semidefinite?

• A symmetric matrix *M* is *positive semidefinite* if for all  $z \in \mathbb{R}^d$ 

• Is 
$$M = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 positive semidefinite?

For any 
$$z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$
, we have

$$z^{T}Mz = \begin{bmatrix} z_{1} & z_{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} = \begin{bmatrix} z_{1} + z_{2} & z_{1} + z_{2} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} = (z_{1} + z_{2})^{2} \ge 0$$

• A symmetric matrix *M* is *positive semidefinite* if for all  $z \in \mathbb{R}^d$ 

• Is 
$$M = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 positive semidefinite?

• A symmetric matrix *M* is *positive semidefinite* if for all  $z \in \mathbb{R}^d$ 

• Is 
$$M = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 positive semidefinite?

For any 
$$z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$
, we have

$$z^{T}Mz = \begin{bmatrix} z_{1} & z_{2} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} = \begin{bmatrix} z_{1} + 2z_{2} & 2z_{1} + z_{2} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} = z_{1}^{2} + 5z_{1}z_{2} + z_{2}^{2}$$

• A symmetric matrix *M* is *positive semidefinite* if for all  $z \in \mathbb{R}^d$ 

• Is 
$$M = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 positive semidefinite? No!  $z = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$  is a counterexample

For any 
$$z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$
, we have

$$z^{T}Mz = \begin{bmatrix} z_{1} & z_{2} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} = \begin{bmatrix} z_{1} + 2z_{2} & 2z_{1} + z_{2} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} = z_{1}^{2} + 5z_{1}z_{2} + z_{2}^{2}$$

• A symmetric matrix *M* is *positive semidefinite* if for all  $z \in \mathbb{R}^d$ 

 $z^T M z \ge 0$ 

• Is  $M = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$  positive semidefinite? No!  $z = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$  is a counterexample Recall: a matrix corresponds to a *linear transformation* <u>A geometric view of PSD</u>: Any transformed vector Mz must have a nonnegative scalar projection on the original vector z. In this case,  $Mz = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$  is in the opposite direction to  $z = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ .

• A symmetric matrix *M* is *positive semidefinite* if for all  $z \in \mathbb{R}^d$ 

 $z^T M z \ge 0$ 

• When is a diagonal matrix PSD?

• A symmetric matrix *M* is *positive semidefinite* if for all  $z \in \mathbb{R}^d$ 

 $z^T M z \ge 0$ 

• When is a diagonal matrix PSD?

Suppose we have a diagonal matrix  $M = \text{diag}(a_1, a_2, ..., a_d)$ , then we have

$$z^{T}Mz = \begin{bmatrix} z_{1} & \dots & z_{d} \end{bmatrix} \begin{bmatrix} a_{1} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & a_{d} \end{bmatrix} \begin{bmatrix} z_{1}\\ \vdots\\ z_{d} \end{bmatrix} = \begin{bmatrix} a_{1}z_{1} & \dots & a_{d}z_{d} \end{bmatrix} \begin{bmatrix} z_{1}\\ \vdots\\ z_{d} \end{bmatrix} = a_{1}z_{1}^{2} + \dots + a_{d}z_{d}^{2}$$

• A symmetric matrix *M* is *positive semidefinite* if for all  $z \in \mathbb{R}^d$ 

 $z^T M z \ge 0$ 

• When is a diagonal matrix PSD? When all its elements are nonnegative

Suppose we have a diagonal matrix  $M = \text{diag}(a_1, a_2, ..., a_d)$ , then we have

$$z^{T}Mz = \begin{bmatrix} z_{1} & \dots & z_{d} \end{bmatrix} \begin{bmatrix} a_{1} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & a_{d} \end{bmatrix} \begin{bmatrix} z_{1}\\ \vdots\\ z_{d} \end{bmatrix} = \begin{bmatrix} a_{1}z_{1} & \dots & a_{d}z_{d} \end{bmatrix} \begin{bmatrix} z_{1}\\ \vdots\\ z_{d} \end{bmatrix} = a_{1}z_{1}^{2} + \dots + a_{d}z_{d}^{2}$$

- A function  $f: \mathbb{R}^d \to \mathbb{R}$  is convex if its Hessian is positive semidefinite everywhere
- Is  $f(z) = ||z||^2$  convex?

- A function  $f: \mathbb{R}^d \to \mathbb{R}$  is convex if its Hessian is positive semidefinite everywhere
- Is  $f(z) = ||z||^2$  convex?

$$f(z) = ||z||^2 = \sum_{i=1}^d z_i^2$$
,

• A function  $f: \mathbb{R}^d \to \mathbb{R}$  is convex if its Hessian is positive semidefinite everywhere

• Is 
$$f(z) = ||z||^2$$
 convex?  

$$f(z) = ||z||^2 = \sum_{i=1}^d z_i^2,$$

$$\nabla f(z) = \begin{bmatrix} \frac{\partial f}{\partial z_1} \\ \vdots \\ \frac{\partial f}{\partial z_d} \end{bmatrix} = \begin{bmatrix} 2z_1 \\ \vdots \\ 2z_d \end{bmatrix} = 2z, \quad H_f = \begin{bmatrix} \frac{\partial f}{\partial z_1 \partial z_1} & \cdots & \frac{\partial f}{\partial z_1 \partial z_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial z_d \partial z_1} & \cdots & \frac{\partial f}{\partial z_d \partial z_d} \end{bmatrix} = \begin{bmatrix} 2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 2 \end{bmatrix} = 2I_d$$

- A function  $f: \mathbb{R}^d \to \mathbb{R}$  is convex if its Hessian is positive semidefinite everywhere
- Is  $f(z) = ||z||^2$  convex? Yes!  $f(z) = ||z||^2 = \sum_{i=1}^d z_i^2,$   $\nabla f(z) = \begin{bmatrix} \frac{\partial f}{\partial z_1} \\ \vdots \\ \frac{\partial f}{\partial z_d} \end{bmatrix} = \begin{bmatrix} 2z_1 \\ \vdots \\ 2z_d \end{bmatrix} = 2z, \quad H_f = \begin{bmatrix} \frac{\partial f}{\partial z_1 \partial z_1} & \cdots & \frac{\partial f}{\partial z_1 \partial z_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial z_d \partial z_1} & \cdots & \frac{\partial f}{\partial z_d \partial z_d} \end{bmatrix} = \begin{bmatrix} 2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 2 \end{bmatrix} = 2I_d$