Convexity

Hao-Wen Dong

Material based on Intro to Machine Learning (CSE 251A), Fall 2021

Definition - Convex function

- A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if for all $a, b \in \mathbb{R}^{d}$ and $0<\theta<1$,

$$
f(\theta a+(1-\theta) b) \leq \theta f(a)+(1-\theta) f(b)
$$

Definition - Convex function

- A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if for all $a, b \in \mathbb{R}^{d}$ and $0<\theta<1$,

$$
f(\theta a+(1-\theta) b) \leq \theta f(a)+(1-\theta) f(b)
$$

Definition - Convex function

- A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if for all $a, b \in \mathbb{R}^{d}$ and $0<\theta<1$,

$$
f(\theta a+(1-\theta) b) \leq \theta f(a)+(1-\theta) f(b)
$$

Definition - Convex function

- A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if for all $a, b \in \mathbb{R}^{d}$ and $0<\theta<1$,

$$
f(\theta a+(1-\theta) b) \leq \theta f(a)+(1-\theta) f(b)
$$

Definition - Convex function

- A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if for all $a, b \in \mathbb{R}^{d}$ and $0<\theta<1$,

$$
f(\theta a+(1-\theta) b) \leq \theta f(a)+(1-\theta) f(b)
$$

Definition - Strictly convex function

- A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is strictly convex if for all $a \neq b \in \mathbb{R}^{d}$ and $0<\theta<1$,

$$
f(\theta a+(1-\theta) b)<\theta f(a)+(1-\theta) f(b)
$$

Definition - Concave function

- A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is concave if for all $a, b \in \mathbb{R}^{d}$ and $0<\theta<1$,

$$
f(\theta a+(1-\theta) b) \geq \theta f(a)+(1-\theta) f(b)
$$

Properties of a convex function

- f is convex $\Leftrightarrow-f$ is concave
- f, g are both convex $\Rightarrow f+g$ is convex
- f, g are both convex $\Rightarrow \max (f, g)$ is convex

Second-derivative test for convexity

- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if its second derivative is nonnegative everywhere
- Example: $f(x)=x^{2}$

Second-derivative test for convexity

- How about a multivariate function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$?

Second-derivative test for convexity

- How about a multivariate function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$?
- A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if its matrix of second derivatives is positive semidefinite everywhere

First derivative of multivariate functions

- For a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, its first derivative is a vector with d entries, called the gradient

$$
\nabla f(z)=\left[\begin{array}{c}
\frac{\partial f}{\partial z_{1}} \\
\vdots \\
\frac{\partial f}{\partial z_{d}}
\end{array}\right]
$$

First derivative of multivariate functions

- For a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, its second derivative is a $d \times d$ matrix, called the Hessian matrix

$$
H_{f}=\left[\begin{array}{ccc}
\frac{\partial f}{\partial z_{1} \partial z_{1}} & \cdots & \frac{\partial f}{\partial z_{1} \partial z_{d}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f}{\partial z_{d} \partial z_{1}} & \cdots & \frac{\partial f}{\partial z_{d} \partial z_{d}}
\end{array}\right]
$$

- It's the Jacobian matrix of $\nabla f(z)$

Second-derivative test for convexity

- A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if its Hessian is positive semidefinite everywhere

Positive semidefinite (PSD)

- A symmetric matrix M is positive semidefinite if for all $z \in \mathbb{R}^{d}$

$$
z^{T} M z \geq 0
$$

Positive semidefinite (PSD)

- A symmetric matrix M is positive semidefinite if for all $z \in \mathbb{R}^{d}$

$$
z^{T} M z \geq 0
$$

- Note that

$$
z^{T} M z=\sum_{i, j=1}^{d} M_{i j} z_{i} z_{j}
$$

A hierarchy of square matrices

Positive semidefinite (PSD)

- A symmetric matrix M is positive semidefinite if for all $z \in \mathbb{R}^{d}$

$$
z^{T} M z \geq 0
$$

- Is $M=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ positive semidefinite?

Positive semidefinite (PSD)

- A symmetric matrix M is positive semidefinite if for all $z \in \mathbb{R}^{d}$

$$
z^{T} M z \geq 0
$$

- Is $M=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ positive semidefinite?

For any $z=\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]$, we have

$$
z^{T} M z=\left[\begin{array}{ll}
z_{1} & z_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{ll}
z_{1}+z_{2} & z_{1}+z_{2}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\left(z_{1}+z_{2}\right)^{2} \geq 0
$$

Positive semidefinite (PSD)

- A symmetric matrix M is positive semidefinite if for all $z \in \mathbb{R}^{d}$

$$
z^{T} M z \geq 0
$$

- Is $M=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ positive semidefinite?

Positive semidefinite (PSD)

- A symmetric matrix M is positive semidefinite if for all $z \in \mathbb{R}^{d}$

$$
z^{T} M z \geq 0
$$

- Is $M=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ positive semidefinite?

$$
\begin{aligned}
& \text { For any } z=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] \text {, we have } \\
& \qquad z^{T} M z=\left[\begin{array}{ll}
z_{1} & z_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{ll}
z_{1}+2 z_{2} & 2 z_{1}+z_{2}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=z_{1}^{2}+5 z_{1} z_{2}+z_{2}^{2}
\end{aligned}
$$

Positive semidefinite (PSD)

- A symmetric matrix M is positive semidefinite if for all $z \in \mathbb{R}^{d}$

$$
z^{T} M z \geq 0
$$

- Is $M=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ positive semidefinite? No! $\mathrm{z}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is a counterexample

For any $z=\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]$, we have

$$
z^{T} M z=\left[\begin{array}{ll}
z_{1} & z_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{ll}
z_{1}+2 z_{2} & 2 z_{1}+z_{2}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=z_{1}^{2}+5 z_{1} z_{2}+z_{2}^{2}
$$

Positive semidefinite (PSD)

- A symmetric matrix M is positive semidefinite if for all $z \in \mathbb{R}^{d}$

$$
z^{T} M z \geq 0
$$

- Is $M=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ positive semidefinite? No! $\mathrm{z}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is a counterexample

Recall: a matrix corresponds to a linear transformation
A geometric view of PSD: Any transformed vector $M z$ must have a nonnegative scalar projection on the original vector z.
In this case, $M z=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ is in the opposite direction to $\mathrm{z}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$.

Positive semidefinite (PSD)

- A symmetric matrix M is positive semidefinite if for all $z \in \mathbb{R}^{d}$

$$
z^{T} M z \geq 0
$$

- When is a diagonal matrix PSD?

Positive semidefinite (PSD)

- A symmetric matrix M is positive semidefinite if for all $z \in \mathbb{R}^{d}$

$$
z^{T} M z \geq 0
$$

- When is a diagonal matrix PSD?

Suppose we have a diagonal matrix $M=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{d}\right)$, then we have

$$
z^{T} M z=\left[\begin{array}{lll}
z_{1} & \cdots & z_{d}
\end{array}\right]\left[\begin{array}{ccc}
a_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & a_{d}
\end{array}\right]\left[\begin{array}{c}
z_{1} \\
\vdots \\
z_{d}
\end{array}\right]=\left[\begin{array}{lll}
a_{1} z_{1} & \ldots & a_{d} z_{d}
\end{array}\right]\left[\begin{array}{c}
z_{1} \\
\vdots \\
z_{d}
\end{array}\right]=a_{1} z_{1}^{2}+\cdots+a_{d} z_{d}^{2}
$$

Positive semidefinite (PSD)

- A symmetric matrix M is positive semidefinite if for all $z \in \mathbb{R}^{d}$

$$
z^{T} M z \geq 0
$$

- When is a diagonal matrix PSD? When all its elements are nonnegative

Suppose we have a diagonal matrix $M=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{d}\right)$, then we have

$$
z^{T} M z=\left[\begin{array}{lll}
z_{1} & \cdots & z_{d}
\end{array}\right]\left[\begin{array}{ccc}
a_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & a_{d}
\end{array}\right]\left[\begin{array}{c}
z_{1} \\
\vdots \\
z_{d}
\end{array}\right]=\left[\begin{array}{lll}
a_{1} z_{1} & \ldots & a_{d} z_{d}
\end{array}\right]\left[\begin{array}{c}
z_{1} \\
\vdots \\
z_{d}
\end{array}\right]=a_{1} z_{1}^{2}+\cdots+a_{d} z_{d}^{2}
$$

Second-derivative test for convexity

- A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if its Hessian is positive semidefinite everywhere
- Is $f(z)=\|z\|^{2}$ convex?

Second-derivative test for convexity

- A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if its Hessian is positive semidefinite everywhere
- Is $f(z)=\|z\|^{2}$ convex?

$$
f(z)=\|z\|^{2}=\sum_{i=1}^{d} z_{i}^{2},
$$

Second-derivative test for convexity

- A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if its Hessian is positive semidefinite everywhere
- Is $f(z)=\|z\|^{2}$ convex?

$$
f(z)=\|z\|^{2}=\sum_{i=1}^{d} z_{i}^{2}
$$

$$
\nabla f(z)=\left[\begin{array}{c}
\frac{\partial f}{\partial z_{1}} \\
\vdots \\
\frac{\partial f}{\partial z_{d}}
\end{array}\right]=\left[\begin{array}{c}
2 z_{1} \\
\vdots \\
2 z_{d}
\end{array}\right]=2 z, \quad H_{f}=\left[\begin{array}{ccc}
\frac{\partial f}{\partial z_{1} \partial z_{1}} & \cdots & \frac{\partial f}{\partial z_{1} \partial z_{d}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f}{\partial z_{d} \partial z_{1}} & \cdots & \frac{\partial f}{\partial z_{d} \partial z_{d}}
\end{array}\right]=\left[\begin{array}{ccc}
2 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 2
\end{array}\right]=2 I_{d}
$$

Second-derivative test for convexity

- A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if its Hessian is positive semidefinite everywhere
- Is $f(z)=\|z\|^{2}$ convex? Yes!

$$
f(z)=\|z\|^{2}=\sum_{i=1}^{d} z_{i}^{2}
$$

$$
\nabla f(z)=\left[\begin{array}{c}
\frac{\partial f}{\partial z_{1}} \\
\vdots \\
\frac{\partial f}{\partial z_{d}}
\end{array}\right]=\left[\begin{array}{c}
2 z_{1} \\
\vdots \\
2 z_{d}
\end{array}\right]=2 z, \quad H_{f}=\left[\begin{array}{ccc}
\frac{\partial f}{\partial z_{1} \partial z_{1}} & \cdots & \frac{\partial f}{\partial z_{1} \partial z_{d}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f}{\partial z_{d} \partial z_{1}} & \cdots & \frac{\partial f}{\partial z_{d} \partial z_{d}}
\end{array}\right]=\left[\begin{array}{ccc}
2 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 2
\end{array}\right]=2 I_{d}
$$

