SANE2023

Learning Text-queried Sound Separation and Synthesis using **Unlabeled Videos and Pretrained Language-Vision Models**

Hao-Wen Dong (University of California San Diego)

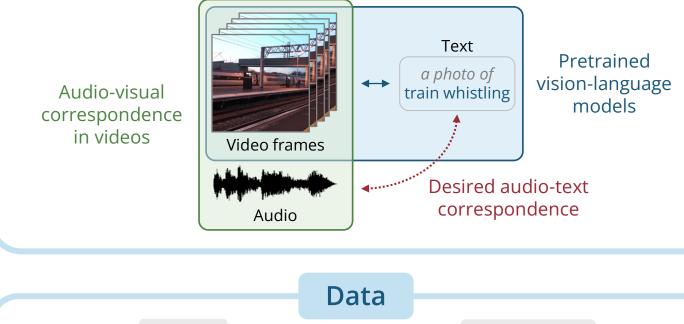
Introduction

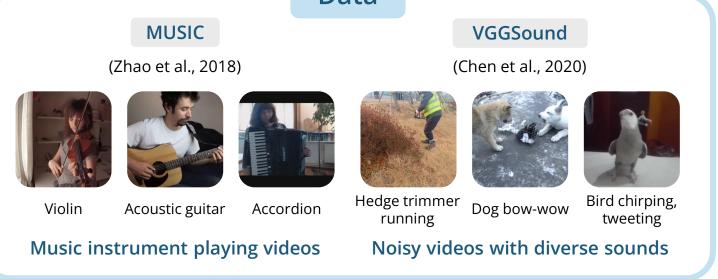
Lately, contrastive language-image pretraining (CLIP) has revolutionized multimodal learning and showed remarkable generalizability in many downstream tasks. While similar attempts have been made to build a counterpart model for language and audio, it remains unclear whether we can scale up text-audio datasets to a size comparable to large-scale text-image datasets.

We explore text-audio data free training for text-queried sound **separation and text-to-audio synthesis**. The proposed models learn the desired text-audio correspondence by combining

- naturally-occurring audio-visual correspondence in videos
- multimodal representation learned by contrastive languageimage pretraining (CLIP)

This study offers a new direction of approaching bimodal learning for text and audio through leveraging the visual modality as a bridge.



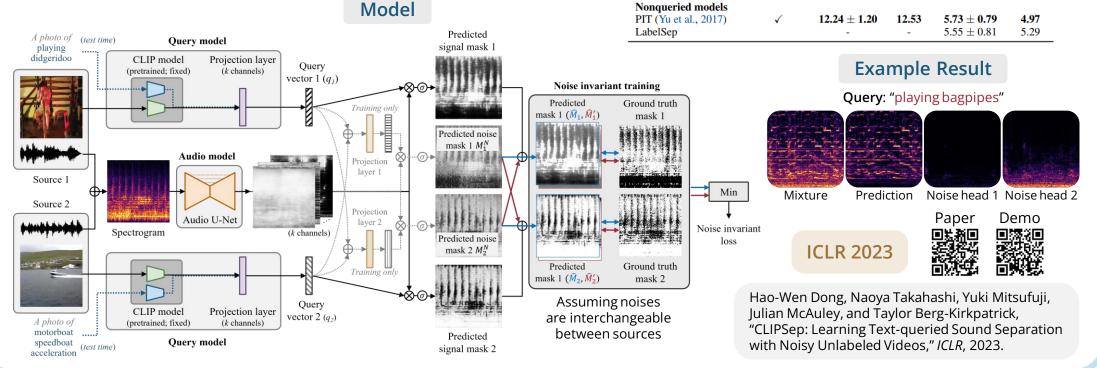


Work done during internships at Sony and Dolby. Joint work with Taylor Berg-Kirkpatrick, Julian McAuley (UC San Diego), Naoya Takahashi, Yuki Mitsufuji (Sony), Xiaoyu Liu, Jordi Pons, Gautam Bhattacharya, Santiago Pascual and Joan Serrà (Dolby).

CLIPSep: Text-queried Sound Separation

Training: We mix the audio track from two videos and train the model to separate each audio source given the corresponding video frame (encoded by the pretrained CLIP-image encoder) as the query.

Inference: We take text queries as inputs by using the pretrained CLIP-text encoder to encode the text.



CLIPSonic: Text-to-audio Synthesis

Training: Similarly, we train a diffusion model that generates a mel spectrogram given the corresponding video frame as the query.

Inference: We take text queries as inputs by using the pretrained CLIPtext encoder to encode the text and a pretrained diffusion prior model to generate a CLIP-image embedding from the CLIP-text embedding.

Text-to-audio Synthesis Results

Model	VGGSound		MUSIC		
	Fidelity	Relevance	Fidelity	Relevance	
CLIPSonic-ZS CLIPSonic-PD CLIPSonic-SD	3.04 ± 0.20	2.86 ± 0.25	3.67 ± 0.18	3.91 ± 0.24	
Ground truth	3.78 ± 0.19	3.54 ± 0.29	3.90 ± 0.17	4.34 ± 0.18	

Image-to-audio Synthesis Results

Model	Fidelity	Relevance
CLIPSonic-IQ (image-queried)	$\textbf{3.29} \pm \textbf{0.16}$	3.80 ± 0.19
SpecVQGAN [20]	2.15 ± 0.17	2.54 ± 0.23
im2wav [21]	2.19 ± 0.15	$\textbf{3.90} \pm \textbf{0.22}$

UC San Diego

	Quantitative Results						
	Unlabeled data	MUSIC ⁺		VGGSound-Clean ⁺			
Model		Mean SDR	Median SDR	Mean SDR	Median SDR		
Mixture	-	4.49 ± 1.41	2.04	$\textbf{-0.77} \pm 1.31$	-0.84		
Text-queried models							
CLIPSep	\checkmark	9.71 ± 1.21	8.73	2.76 ± 1.00	3.95		
CLIPSep-NIT	\checkmark	$\textbf{10.27} \pm \textbf{1.04}$	10.02	$\textbf{3.05} \pm \textbf{0.73}$	3.26		
BERTSep		4.67 ± 0.44	4.41	5.09 ± 0.80	5.49		
CLIPSep-Text		10.73 ± 0.99	9.93	5.49 ± 0.82	5.06		
Nonqueried models							
PIT (Yu et al., 2017)	\checkmark	$\textbf{12.24} \pm \textbf{1.20}$	12.53	$\textbf{5.73} \pm \textbf{0.79}$	4.97		
LabelSep		-	-	5.55 ± 0.81	5.29		

