
MusPy: Symbolic Music Processing in Python

Hao-Wen Dong Ke Chen Julian McAuley Taylor Berg-Kirkpatrick

University of California San Diego

About me

2

Hi, I’m Herman.
I do Music x AI research.
I love music and movies!

National Taiwan University
B.S. in Electrical Engineering

2013 – 2017

University of California San Diego
M.S. in Computer Science

2019 – 2021

Yamaha
Research Intern

Summer 2019

Academia Sinica
Research Assistant

2017 – 2019

2019 – present

University of California San Diego
PhD Candidate in Computer Science

Summer 2021
Dolby
Deep Learning Audio Intern

(Summer 2022)
Sony
Student Intern

(Fall 2022)
Amazon
Applied Scientist Intern

Outline

• Intro to MusPy

• Experiments

• Case Study I – Automatic Instrumentation

• Case Study II – Music Performance Synthesis

3

4

Intro to MusPy

“MusPy: A Toolkit for Symbolic Music Generation” (ISMIR 2020)

Hao-Wen Dong Ke Chen Julian McAuley Taylor Berg-Kirkpatrick

Why MusPy?

5

Data
preprocessing

Result
analysis

Model
training

Model
creation

Data
collection

MusPy

Machine learning library
(e.g., PyTorch and TensorFlow)

Model
training

Model
creation

Overview

6

MusPy

Music class

.mid

MIDI

.json

JSON

save load

parse

External
datasets

Representations
• pitch-based • piano-roll
• event-based • note-basedfrom

to

.mxl

MusicXML

External systems
(e.g., music notation softwares,

synthesizers, sequencers, DAWs)

External libraries
(e.g., PyTorch, TensorFlow)

Unified
dataset

from

to

Remote

Dataset Dataset Dataset

Dataset Dataset

Datasets
• PyTorch dataset
• TensorFlow dataset

download

Objects
(in other music libraries)

• music21 • pretty_midi
• mido • Pypianoroll

External libraries
(e.g., music21,

mido, pretty_midi,
Pypianoroll)

to

from

read write

Dataset management

.abc

ABC

.yaml

YAML

Overview

7

.mid

MIDI

.json

JSON

save load

parse

External
datasets

Representations
• pitch-based • piano-roll
• event-based • note-basedfrom

to

.mxl

MusicXML

External systems
(e.g., music notation softwares,

synthesizers, sequencers, DAWs)

External libraries
(e.g., PyTorch, TensorFlow)

Unified
dataset

from

to

Remote

Dataset Dataset Dataset

Dataset Dataset

Datasets
• PyTorch dataset
• TensorFlow dataset

download

Objects
(in other music libraries)

• music21 • pretty_midi
• mido • Pypianoroll

External libraries
(e.g., music21,

mido, pretty_midi,
Pypianoroll)

to

from

read write

Dataset management

.abc

ABC

.yaml

YAML

MusPy

Music class

Overview

8

.json

JSON

save load

parse Representations
• pitch-based • piano-roll
• event-based • note-basedfrom

to

External libraries
(e.g., PyTorch, TensorFlow)

Unified
dataset

from

to

Remote

Dataset Dataset Dataset

Dataset Dataset

Datasets
• PyTorch dataset
• TensorFlow dataset

download

Objects
(in other music libraries)

• music21 • pretty_midi
• mido • Pypianoroll

External libraries
(e.g., music21,

mido, pretty_midi,
Pypianoroll)

to

from
Dataset management

.yaml

YAML

MusPy

Music class

.mid

MIDI

External
datasets

.mxl

MusicXML

External systems
(e.g., music notation softwares,

synthesizers, sequencers, DAWs)

read write

.abc

ABC

Overview

9

.mid

MIDI

.json

JSON

save load

External
datasets

Representations
• pitch-based • piano-roll
• event-based • note-basedfrom

to

.mxl

MusicXML

External systems
(e.g., music notation softwares,

synthesizers, sequencers, DAWs)

External libraries
(e.g., PyTorch, TensorFlow)

Unified
dataset

from

to Datasets
• PyTorch dataset
• TensorFlow dataset

Objects
(in other music libraries)

• music21 • pretty_midi
• mido • Pypianoroll

External libraries
(e.g., music21,

mido, pretty_midi,
Pypianoroll)

to

from

read write

.abc

ABC

.yaml

YAML

MusPy

Music class

Remote

Dataset Dataset Dataset

Dataset Dataset

download

Dataset management

parse

Overview

10

.mid

MIDI

parse

External
datasets

Representations
• pitch-based • piano-roll
• event-based • note-basedfrom

to

.mxl

MusicXML

External systems
(e.g., music notation softwares,

synthesizers, sequencers, DAWs)

External libraries
(e.g., PyTorch, TensorFlow)

from

to

Remote

Dataset Dataset Dataset

Dataset Dataset

Datasets
• PyTorch dataset
• TensorFlow dataset

download

Objects
(in other music libraries)

• music21 • pretty_midi
• mido • Pypianoroll

External libraries
(e.g., music21,

mido, pretty_midi,
Pypianoroll)

to

from

read write

Dataset management

.abc

ABC

MusPy

Music class

.json

JSON

save load

Unified
dataset

.yaml

YAML

Overview

11

.mid

MIDI

.json

JSON

save load

parse

External
datasets

Representations
• pitch-based • piano-roll
• event-based • note-basedfrom

to

.mxl

MusicXML

External systems
(e.g., music notation softwares,

synthesizers, sequencers, DAWs)

External libraries
(e.g., PyTorch, TensorFlow)

Unified
dataset

from

to

Remote

Dataset Dataset Dataset

Dataset Dataset

Datasets
• PyTorch dataset
• TensorFlow dataset

download

read write

Dataset management

.abc

ABC

.yaml

YAML

MusPy

Music class

Objects
(in other music libraries)

• music21 • pretty_midi
• mido • Pypianoroll

External libraries
(e.g., music21,

mido, pretty_midi,
Pypianoroll)

to

from

Overview

12

.mid

MIDI

.json

JSON

save load

parse

External
datasets

.mxl

MusicXML

External systems
(e.g., music notation softwares,

synthesizers, sequencers, DAWs)

Unified
dataset

Remote

Dataset Dataset Dataset

Dataset Dataset

download

Objects
(in other music libraries)

• music21 • pretty_midi
• mido • Pypianoroll

External libraries
(e.g., music21,

mido, pretty_midi,
Pypianoroll)

to

from

read write

Dataset management

.abc

ABC

.yaml

YAML

MusPy

Music class

Representations
• pitch-based • piano-roll
• event-based • note-basedfrom

to

from

to Datasets
• PyTorch dataset
• TensorFlow dataset

External libraries
(e.g., PyTorch, TensorFlow)

MusPy Music class

13

.mid

MIDI

.json

JSON

save load

parse

External
datasets

Representations
• pitch-based • piano-roll
• event-based • note-basedfrom

to

.mxl

MusicXML

External systems
(e.g., music notation softwares,

synthesizers, sequencers, DAWs)

External libraries
(e.g., PyTorch, TensorFlow)

Unified
dataset

from

to

Remote

Dataset Dataset Dataset

Dataset Dataset

Datasets
• PyTorch dataset
• TensorFlow dataset

download

Objects
(in other music libraries)

• music21 • pretty_midi
• mido • Pypianoroll

External libraries
(e.g., music21,

mido, pretty_midi,
Pypianoroll)

to

from

read write

Dataset management

.abc

ABC

.yaml

YAML

MusPy

Music class

MusPy Music class

14

Music

Track

Metadata

resolution

Tempo

TimeSignature

KeySignature

Lyric

Annotation

Beat

schema_version title creators copyright collection filename format

program is_drum name Note Chord Lyric Annotation

time qpm

time numerator denominator

time is_downbeat

time lyric

time groupannotation

time root mode fifths

BooleanInteger

Float Any type

String List of strings

time duration pitch velocity pitch_str

Object List of objects

15

MusPy native format

• A universal container for symbolic music

• Serializable to JSON/YAML

• Human-readable and machine-friendly

metadata:
schema_version: "0.0"
title: Für Elise
creators: [Ludwig van Beethoven]
copyright: null
collection: Example dataset
source_filename: example.yaml
source_format: yaml

resolution: 24
tempos:
- {time: 0, qpm: 72}

key_signatures:
- {time: 0, root: 9, mode: minor, fifths: 0}

time_signatures:
- {time: 0, numerator: 3, denominator: 8}

beats:
- {time: 0, is_downbeat: false}
- {time: 12, is_downbeat: true}
- {time: 24, is_downbeat: false}
- {time: 36, is_downbeat: false}
- {time: 48, is_downbeat: true}

lyrics:
- {time: 0, lyric: Nothing but a lyric}

annotations:
- {time: 0, annotation: Nothing but an annotation, group: null}

tracks:
- program: 0
is_drum: false
name: Melody
notes:
- {time: 0, duration: 6, pitch: 76, velocity: 64}
- {time: 6, duration: 6, pitch: 75, velocity: 64}
- {time: 12, duration: 6, pitch: 76, velocity: 64}
- {time: 18, duration: 6, pitch: 75, velocity: 64}
- {time: 24, duration: 6, pitch: 76, velocity: 64
- {time: 30, duration: 6, pitch: 71, velocity: 64}
- {time: 36, duration: 6, pitch: 74, velocity: 64}
- {time: 42, duration: 6, pitch: 72, velocity: 64}
- {time: 48, duration: 6, pitch: 69, velocity: 64}

chords: null
lyrics:
- {time: 0, lyric: Nothing but a lyric}

annotations:
- {time: 0, annotation: Nothing but an annotation, group: null}

Comparisons to MIDI & MusicXML

16

MIDI MusicXML MusPy

Sequential timing ✓ ✓

Playback velocities ✓ △ ✓

Program information ✓ △ ✓

Layout information ✓

Note beams and slurs ✓

Song/source meta data △ ✓ ✓

Track/part information △ ✓ ✓

Dynamic/tempo markings ✓ ✓

Concept of notes ✓ ✓

Measure boundaries ✓ ✓

Human readability △ ✓

Comparisons to MIDI & MusicXML

17

MIDI MusicXML MusPy

Sequential timing ✓ ✓

Playback velocities ✓ △ ✓

Program information ✓ △ ✓

Layout information ✓

Note beams and slurs ✓

Song/source meta data △ ✓ ✓

Track/part information △ ✓ ✓

Dynamic/tempo markings ✓ ✓

Concept of notes ✓ ✓

Measure boundaries ✓ ✓

Human readability △ ✓

I/O interfaces

18

parse

External
datasets

External systems
(e.g., music notation softwares,

synthesizers, sequencers, DAWs)

External libraries
(e.g., PyTorch, TensorFlow)

Unified
dataset

from

to

Remote

Dataset Dataset Dataset

Dataset Dataset

Datasets
• PyTorch dataset
• TensorFlow dataset

download

External libraries
(e.g., music21,

mido, pretty_midi,
Pypianoroll)

Dataset management

MusPy

Music class

.json

JSON

save load

.yaml

YAML

.mid

MIDI

.mxl

MusicXML

read write

.abc

ABC

Representations
• pitch-based • piano-roll
• event-based • note-basedfrom

to

Objects
(in other music libraries)

• music21 • pretty_midi
• mido • Pypianoroll

to

from

Dataset management

19

.mid

MIDI

.json

JSON

save load

External
datasets

Representations
• pitch-based • piano-roll
• event-based • note-basedfrom

to

.mxl

MusicXML

External systems
(e.g., music notation softwares,

synthesizers, sequencers, DAWs)

External libraries
(e.g., PyTorch, TensorFlow)

Unified
dataset

from

to Datasets
• PyTorch dataset
• TensorFlow dataset

Objects
(in other music libraries)

• music21 • pretty_midi
• mido • Pypianoroll

External libraries
(e.g., music21,

mido, pretty_midi,
Pypianoroll)

to

from

read write

.abc

ABC

.yaml

YAML

MusPy

Music class

Remote

Dataset Dataset Dataset

Dataset Dataset

download

Dataset management

parse

Dataset management – An example

20

Remote

Download and extract the dataset
nes = muspy.NESMusicDatabase(root="data/nes/",

download_and_extract=True)

Source
dataset

Convert the dataset to MusPy Music objects
nes.convert()

Converted
dataset

Iterate over the dataset
for music in nes:
do_something(music)

Music objects

Convert to a PyTorch dataset
dataset = nes.to_pytorch_dataset(representation="pianoroll")

Training data

Datasets supported

21

Dataset Format Hours Songs Genre Melody Chords Multitrack

Lakh MIDI Dataset MIDI >5000 174,533 misc △ △ △

MAESTRO Dataset MIDI 201.21 1,282 classical

Wikifonia Lead Sheet Dataset MusicXML 198.40 6,405 misc ✓ ✓

Essen Folk Song Dataset ABC 56.62 9,034 folk ✓ ✓

NES Music Database MIDI 46.11 5,278 game ✓ ✓

MusicNet Dataset MIDI 30.36 323 classical △

Hymnal Tune Dataset MIDI 18.74 1,756 hymn ✓

Hymnal Dataset MIDI 17.50 1,723 hymn

music21’s Corpus misc 16.86 613 misc △ △

EMOPIA Dataset MIDI 10.98 387 pop

Nottingham Database ABC 10.54 1,036 folk ✓ ✓

music21’s JSBach Corpus MusicXML 3.46 410 classical ✓

JSBach Chorale Dataset MIDI 3.21 382 classical ✓

Haydn Op.20 Dataset Humdrum 1.26 24 classical ✓

Result analysis tools

22

Piano-roll visualization

- empty_beat_rate
- empty_measure_rate
- drum_in_pattern_rate
- drum_pattern_consistency
- groove_consistency

Rhythm-related metrics

- pitch_range
- n_pitches_used
- n_pitch_classes_used
- polyphony
- polyphony_rate
- pitch_in_scale_rate
- scale_consistency
- pitch_entropy
- pitch_class_entropy

Pitch-related metrics

Audio rendering

Related work

• Magenta

 Provides several model instances in TensorFlow

• music21 (Cuthbert and Ariza 2010)

 Provides powerful tools for computational musicology

 Comes with its own corpus

• jSymbolic (McKay and Fujinaga 2006)

 Extracts statistical information from symbolic music data

23

Magenta, https://magenta.tensorflow.org/.
Cuthbert and Ariza, “A Toolkit for Computer-Aided Musicology and Symbolic Music Data,” Proc. ISMIR, 2010.
McKay and Fujinaga, “jSymbolic: A Feature Extractor for MIDI Files,” Proc. ICMC, 2006.

https://magenta.tensorflow.org/

Summary

MusPy provides

• Dataset management

• Data I/O for common formats

• Interfaces to common music libraries

• Implementations of common music representations

• Result analysis tools

24

25

Experiments

Dataset analysis

26

Length

Tempo
Key

27

Music language models

Settings

• Implement four autoregressive models

 RNN, LSTM, GRU and Transformer

• Use a MIDI-like event representation

• Measure the perplexity of 1000 test
samples

28

Music language models

Results

• All models have similar tendencies

29

Music language models

Results

• All models have similar tendencies.

• Perplexity is positively correlated to
dataset size.

 Within each group (multipitch vs
monophonic)

30

Measuring cross-dataset generalizability

Settings

1. Train the model on a dataset 𝒟

2. Test the trained model on dataset 𝒟′

3. Repeat for all 11x11 pairs of 𝒟,𝒟′

(Darker is better.)

31

Measuring cross-dataset generalizability

Results

• Cross-dataset generalizability is
asymmetric.

• A model trained on a multi-pitch
dataset generalizes well to a
monophonic dataset.

 Yet not the other way around (red block)

(Darker is better.)

32

Combining heterogeneous datasets

Settings

• Unified

Sample uniformly from the pool of all data
of different datasets

• Stratified

Pick a dataset randomly and sample
uniformly from that dataset (to alleviate data

imbalance issue)

(Darker is better.)

33

Combining heterogeneous datasets

Results

• Unified

The model trained on the unified dataset
yields a lower perplexity on each dataset.

• Stratified

Stratified sampling reduce perplexities on
most datasets with a sacrifice of an
increased perplexity on LMD. (LMD is the

largest dataset.) (Darker is better.)

Summary

• Measured the relative diversities of 11 datasets

• Analyzed the cross-dataset generalizabilities of a music generation system

• Showed how combining heterogenous datasets can help improve generalizability

34

35

Case Study I – Automatic Instrumentation

“Towards Automatic Instrumentation by Learning to Separate Parts in Symbolic Multitrack Music” (ISMIR 2021)

Hao-Wen Dong Chris Donahue Taylor Berg-Kirkpatrick Julian McAuley

Motivation

• Automatic instrumentation – Dynamically assign instruments to notes in solo music

36

Intelligent musical instruments

Bass Guitar Piano Strings

Assistive composing tools

37

Overview

• Acquire paired data

• Train a part separation model

• Perform automatic instrumentation

Multitrack
dataset

Part
separation

Multitrack

Mixture

Problem formulation

• Part separation – Separate parts from their mixture in multitrack music

• Frame as a sequential multiclass classification problem

38

Part separation
model

Notes

𝑥1, … , 𝑥𝑁

Part labels

𝑦1, … , 𝑦𝑁

MultitrackMixture

39

Models

Online models

 LSTMs

 Transformer decoders

Offline models

 BiLSTMs

 Transformer encoders

Bass Guitar Piano Strings

Demo

• Produce convincing alternative instrumentations for an existing arrangement

40

Original

LSTM
(without entry hints)

BiLSTM
(with entry hints)

More samples can be found at salu133445.github.io/arranger/.

https://salu133445.github.io/arranger/

MusPy in the pipeline

41

Model training

Data collection

Data preprocessing

Model creation

Result analysis

• Download datasets
• Convert data into MusPy JSON format

• Adjust temporal resolution
• Map instrument names
• Convert data into note representation

• Save the results as MIDI files
• Synthesize the results into audio
• Visualize the results in the piano roll form

42

Case Study II – Music Performance Synthesis

“Deep Performer: Score-to-Audio Music Performance Synthesis” (ICASSP 2022)

Hao-Wen Dong Cong Zhou Taylor Berg-Kirkpatrick Julian McAuley

Overview

43

Mel spectrogram

Waveform

Aligned score

Raw score

Alignment model

Synthesis model

Inversion model

Bach Violin Dataset

• Bach’s sonatas and partitas for solo violin (BWV 1001–1006)

• 6.7 hours, 17 violinists

Alignment derivation

1. Synthesize the scores using FluidSynth (a free software synthesizer)

2. Run dynamic time warping on the spectrograms (of the recording & synthesized audio)

44

Alignment result

Synthesis model

• A transformer network

based on FastSpeech (Ren et al. 2019)

45

Transformer
decoder

Positional encoding

Melspectrogram

Polyphonic
mixer

Note-wise
positional
encoding

Tempo

Tempo
embedding

Performer

Performer
embedding

Time
embedding

Onset Duration

Duration
embedding

Velocity

Velocity
embedding

Pitch

Pitch
embedding

Linear layer

Notes

Transformer
encoder

Positional encoding

Ren et al., “FastSpeech: Fast, robust and controllable text to speech,” Proc. NeurIPS, 2019.

46

Methods

• Polyphonic mixer

Extend the state expansion mechanism to
handle polyphonic inputs

• Note-wise positional encoding

Provide positional information within each
note for a fine-grained conditioning

Polyphonic mixer
Onsets &
durations

Frame embedding
(decoder’s input)

Note-wise
positional
encoding

Note embedding
(encoder’s output)

Demo

47

Violin

(trained on Bach Violin Dataset)

Piano

(trained on MAESTRO Dataset)

More samples can be found at salu133445.github.io/deepperformer/.
Hawthorne et al., “Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset,” Proc. ICLR, 2019.

https://salu133445.github.io/deepperformer/

MusPy in the pipeline

48

Model training

Data collection

Data preprocessing

Model creation

Result analysis

• Convert data into MusPy JSON format

• Synthesize the data for alignment purpose
• Convert data into note representation

• Visualize the results in the piano roll form

49

Conclusion

Conclusion

50

• Presented a Python library for processing symbolic music

• Showcased how MusPy enabled large-scale cross-dataset analysis

 Relative diversities of the 11 supported datasets

 Cross-dataset generalizabilities of a music generation system

• Studied how we used MusPy in two recent projects

 Automatic instrumentation

 Music performance synthesis

Thank you!

pip install muspy

Learn more at salu133445.github.io/muspy/

https://salu133445.github.io/muspy/

