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Intro to MusPy

“MusPy: A Toolkit for Symbolic Music Generation” (ISMIR 2020)

Hao-Wen Dong    Ke Chen    Julian McAuley    Taylor Berg-Kirkpatrick
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MusPy Music class
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MusPy native format

• A universal container for symbolic music

• Serializable to JSON/YAML

• Human-readable and machine-friendly

metadata:
schema_version: "0.0"
title: Für Elise
creators: [Ludwig van Beethoven]
copyright: null
collection: Example dataset
source_filename: example.yaml
source_format: yaml

resolution: 24
tempos:
- {time: 0, qpm: 72}

key_signatures:
- {time: 0, root: 9, mode: minor, fifths: 0}

time_signatures:
- {time: 0, numerator: 3, denominator: 8}

beats:
- {time: 0, is_downbeat: false}
- {time: 12, is_downbeat: true}
- {time: 24, is_downbeat: false}
- {time: 36, is_downbeat: false}
- {time: 48, is_downbeat: true}

lyrics:
- {time: 0, lyric: Nothing but a lyric}

annotations:
- {time: 0, annotation: Nothing but an annotation, group: null}

tracks:
- program: 0
is_drum: false
name: Melody
notes:
- {time: 0, duration: 6, pitch: 76, velocity: 64}
- {time: 6, duration: 6, pitch: 75, velocity: 64}
- {time: 12, duration: 6, pitch: 76, velocity: 64}
- {time: 18, duration: 6, pitch: 75, velocity: 64}
- {time: 24, duration: 6, pitch: 76, velocity: 64
- {time: 30, duration: 6, pitch: 71, velocity: 64}
- {time: 36, duration: 6, pitch: 74, velocity: 64}
- {time: 42, duration: 6, pitch: 72, velocity: 64}
- {time: 48, duration: 6, pitch: 69, velocity: 64}

chords: null
lyrics:
- {time: 0, lyric: Nothing but a lyric}

annotations:
- {time: 0, annotation: Nothing but an annotation, group: null}



Comparisons to MIDI & MusicXML
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MIDI MusicXML MusPy

Sequential timing ✓ ✓

Playback velocities ✓ △ ✓

Program information ✓ △ ✓

Layout information ✓

Note beams and slurs ✓

Song/source meta data △ ✓ ✓

Track/part information △ ✓ ✓

Dynamic/tempo markings ✓ ✓

Concept of notes ✓ ✓

Measure boundaries ✓ ✓

Human readability △ ✓



Comparisons to MIDI & MusicXML

17

MIDI MusicXML MusPy

Sequential timing ✓ ✓

Playback velocities ✓ △ ✓

Program information ✓ △ ✓

Layout information ✓

Note beams and slurs ✓

Song/source meta data △ ✓ ✓

Track/part information △ ✓ ✓

Dynamic/tempo markings ✓ ✓

Concept of notes ✓ ✓

Measure boundaries ✓ ✓

Human readability △ ✓



I/O interfaces
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Dataset management
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Dataset management – An example
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Remote

# Download and extract the dataset
nes = muspy.NESMusicDatabase(root="data/nes/",

download_and_extract=True)

Source
dataset

# Convert the dataset to MusPy Music objects
nes.convert()

Converted
dataset

# Iterate over the dataset
for music in nes:
do_something(music)

Music objects

# Convert to a PyTorch dataset
dataset = nes.to_pytorch_dataset(representation="pianoroll")

Training data



Datasets supported
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Dataset Format Hours Songs Genre Melody Chords Multitrack

Lakh MIDI Dataset MIDI >5000 174,533 misc △ △ △

MAESTRO Dataset MIDI 201.21 1,282 classical

Wikifonia Lead Sheet Dataset MusicXML 198.40 6,405 misc ✓ ✓

Essen Folk Song Dataset ABC 56.62 9,034 folk ✓ ✓

NES Music Database MIDI 46.11 5,278 game ✓ ✓

MusicNet Dataset MIDI 30.36 323 classical △

Hymnal Tune Dataset MIDI 18.74 1,756 hymn ✓

Hymnal Dataset MIDI 17.50 1,723 hymn

music21’s Corpus misc 16.86 613 misc △ △

EMOPIA Dataset MIDI 10.98 387 pop

Nottingham Database ABC 10.54 1,036 folk ✓ ✓

music21’s JSBach Corpus MusicXML 3.46 410 classical ✓

JSBach Chorale Dataset MIDI 3.21 382 classical ✓

Haydn Op.20 Dataset Humdrum 1.26 24 classical ✓



Result analysis tools
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Piano-roll visualization

- empty_beat_rate
- empty_measure_rate
- drum_in_pattern_rate
- drum_pattern_consistency
- groove_consistency

Rhythm-related metrics

- pitch_range
- n_pitches_used
- n_pitch_classes_used
- polyphony
- polyphony_rate
- pitch_in_scale_rate
- scale_consistency
- pitch_entropy
- pitch_class_entropy

Pitch-related metrics

Audio rendering



Related work

• Magenta

 Provides several model instances in TensorFlow

• music21  (Cuthbert and Ariza 2010)

 Provides powerful tools for computational musicology

 Comes with its own corpus

• jSymbolic (McKay and Fujinaga 2006)

 Extracts statistical information from symbolic music data

23

Magenta, https://magenta.tensorflow.org/.
Cuthbert and Ariza, “A Toolkit for Computer-Aided Musicology and Symbolic Music Data,” Proc. ISMIR, 2010.
McKay and Fujinaga, “jSymbolic: A Feature Extractor for MIDI Files,” Proc. ICMC, 2006.

https://magenta.tensorflow.org/


Summary

MusPy provides

• Dataset management

• Data I/O for common formats 

• Interfaces to common music libraries

• Implementations of common music representations

• Result analysis tools

24
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Experiments



Dataset analysis
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Length

Tempo
Key
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Music language models

Settings

• Implement four autoregressive models

 RNN, LSTM, GRU and Transformer

• Use a MIDI-like event representation

• Measure the perplexity of 1000 test 
samples
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Music language models

Results

• All models have similar tendencies
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Music language models

Results

• All models have similar tendencies.

• Perplexity is positively correlated to 
dataset size.

 Within each group (multipitch vs 
monophonic)
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Measuring cross-dataset generalizability

Settings

1. Train the model on a dataset 𝒟

2. Test the trained model on dataset 𝒟′

3. Repeat for all 11x11 pairs of 𝒟,𝒟′

(Darker is better.)
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Measuring cross-dataset generalizability

Results

• Cross-dataset generalizability is 
asymmetric.

• A model trained on a multi-pitch 
dataset generalizes well to a 
monophonic dataset.

 Yet not the other way around  (red block)

(Darker is better.)
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Combining heterogeneous datasets 

Settings

• Unified

Sample uniformly from the pool of all data 
of different datasets

• Stratified

Pick a dataset randomly and sample 
uniformly from that dataset  (to alleviate data 

imbalance issue)

(Darker is better.)
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Combining heterogeneous datasets 

Results

• Unified

The model trained on the unified dataset 
yields a lower perplexity on each dataset.

• Stratified

Stratified sampling reduce perplexities on 
most datasets with a sacrifice of an 
increased perplexity on LMD.  (LMD is the 

largest dataset.) (Darker is better.)



Summary

• Measured the relative diversities of 11 datasets

• Analyzed the cross-dataset generalizabilities of a music generation system

• Showed how combining heterogenous datasets can help improve generalizability

34
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Case Study I – Automatic Instrumentation

“Towards Automatic Instrumentation by Learning to Separate Parts in Symbolic Multitrack Music” (ISMIR 2021)

Hao-Wen Dong    Chris Donahue    Taylor Berg-Kirkpatrick     Julian McAuley



Motivation

• Automatic instrumentation – Dynamically assign instruments to notes in solo music

36

Intelligent musical instruments

Bass Guitar Piano Strings

Assistive composing tools
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Overview

• Acquire paired data

• Train a part separation model

• Perform automatic instrumentation

Multitrack
dataset

Part 
separation

Multitrack

Mixture



Problem formulation

• Part separation – Separate parts from their mixture in multitrack music

• Frame as a sequential multiclass classification problem

38

Part separation 
model

Notes

𝑥1, … , 𝑥𝑁

Part labels

𝑦1, … , 𝑦𝑁

MultitrackMixture
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Models

Online models

 LSTMs

 Transformer decoders

Offline models

 BiLSTMs

 Transformer encoders

Bass Guitar Piano Strings



Demo

• Produce convincing alternative instrumentations for an existing arrangement
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Original

LSTM
(without entry hints)

BiLSTM
(with entry hints)

More samples can be found at salu133445.github.io/arranger/.

https://salu133445.github.io/arranger/


MusPy in the pipeline
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Model training

Data collection

Data preprocessing

Model creation

Result analysis

• Download datasets
• Convert data into MusPy JSON format

• Adjust temporal resolution
• Map instrument names
• Convert data into note representation

• Save the results as MIDI files
• Synthesize the results into audio
• Visualize the results in the piano roll form
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Case Study II – Music Performance Synthesis

“Deep Performer: Score-to-Audio Music Performance Synthesis” (ICASSP 2022)

Hao-Wen Dong    Cong Zhou    Taylor Berg-Kirkpatrick     Julian McAuley



Overview
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Mel spectrogram

Waveform

Aligned score

Raw score

Alignment model

Synthesis model

Inversion model



Bach Violin Dataset

• Bach’s sonatas and partitas for solo violin (BWV 1001–1006)

• 6.7 hours, 17 violinists

Alignment derivation

1. Synthesize the scores using FluidSynth (a free software synthesizer)

2. Run dynamic time warping on the spectrograms  (of the recording & synthesized audio)
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Alignment result



Synthesis model

• A transformer network

based on FastSpeech (Ren et al. 2019)
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Transformer
decoder

Positional encoding

Melspectrogram

Polyphonic
mixer

Note-wise 
positional 
encoding

Tempo

Tempo 
embedding

Performer

Performer 
embedding

Time 
embedding

Onset Duration

Duration 
embedding

Velocity

Velocity 
embedding

Pitch

Pitch 
embedding

Linear layer

Notes

Transformer
encoder

Positional encoding

Ren et al., “FastSpeech: Fast, robust and controllable text to speech,” Proc. NeurIPS, 2019.
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Methods

• Polyphonic mixer

Extend the state expansion mechanism to 
handle polyphonic inputs

• Note-wise positional encoding

Provide positional information within each 
note for a fine-grained conditioning

Polyphonic mixer
Onsets & 
durations

Frame embedding
(decoder’s input)

Note-wise 
positional 
encoding

Note embedding
(encoder’s output)



Demo
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Violin

(trained on Bach Violin Dataset)

Piano

(trained on MAESTRO Dataset)

More samples can be found at salu133445.github.io/deepperformer/.
Hawthorne et al., “Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset,” Proc. ICLR, 2019.

https://salu133445.github.io/deepperformer/


MusPy in the pipeline
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Model training

Data collection

Data preprocessing

Model creation

Result analysis

• Convert data into MusPy JSON format

• Synthesize the data for alignment purpose
• Convert data into note representation

• Visualize the results in the piano roll form
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Conclusion



Conclusion
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• Presented a Python library for processing symbolic music

• Showcased how MusPy enabled large-scale cross-dataset analysis

 Relative diversities of the 11 supported datasets

 Cross-dataset generalizabilities of a music generation system

• Studied how we used MusPy in two recent projects

 Automatic instrumentation

 Music performance synthesis



Thank you!

pip install muspy

Learn more at salu133445.github.io/muspy/

https://salu133445.github.io/muspy/

