MusPy: Symbolic Music Processing in Python

Hao-Wen Dong Ke Chen Julian McAuley Taylor Berg-Kirkpatrick

University of California San Diego

UC San Diego

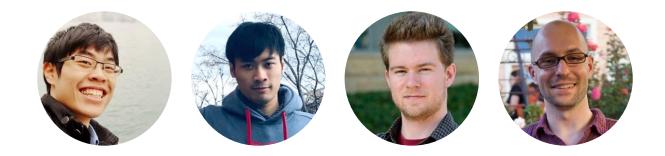
Outline

- Intro to MusPy
- Experiments
- Case Study I Automatic Instrumentation
- Case Study II Music Performance Synthesis

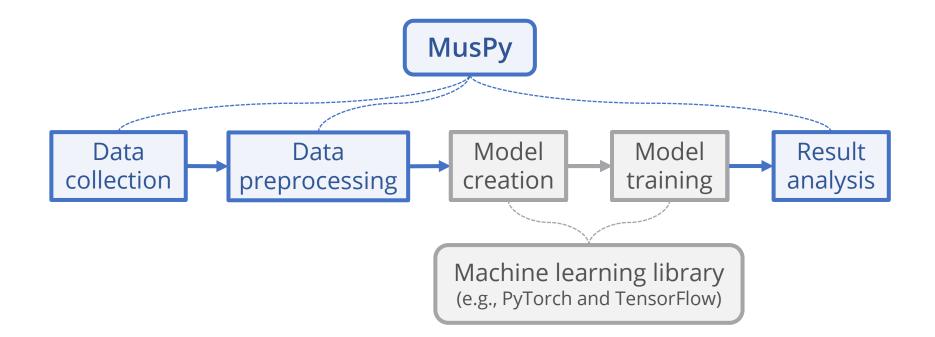
Intro to MusPy

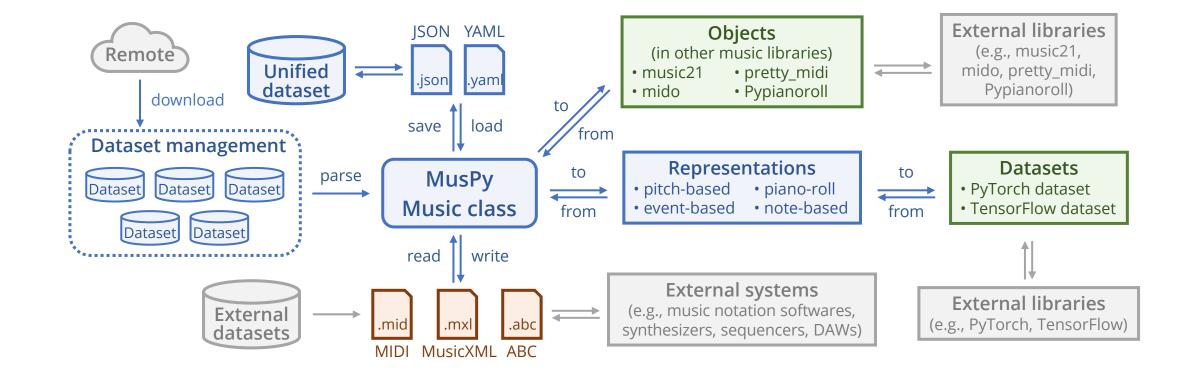
"MusPy: A Toolkit for Symbolic Music Generation" (ISMIR 2020)

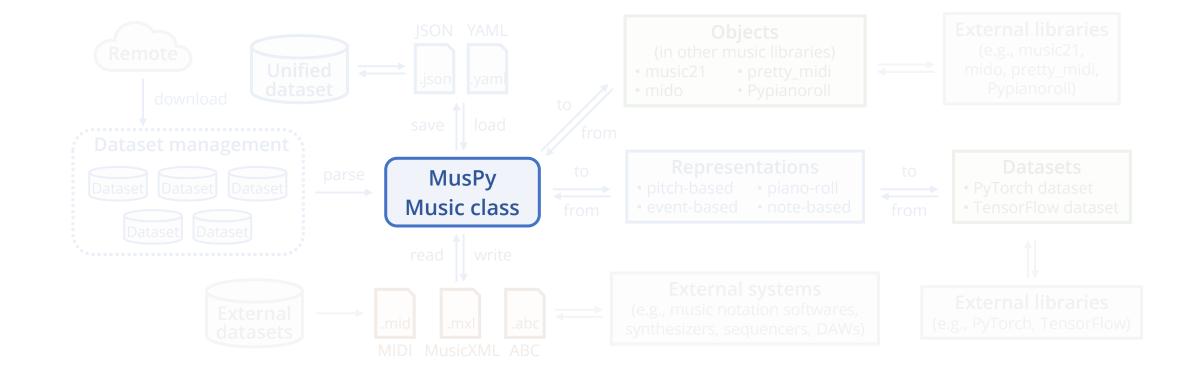
Hao-Wen Dong Ke Chen Julian McAuley Taylor Berg-Kirkpatrick

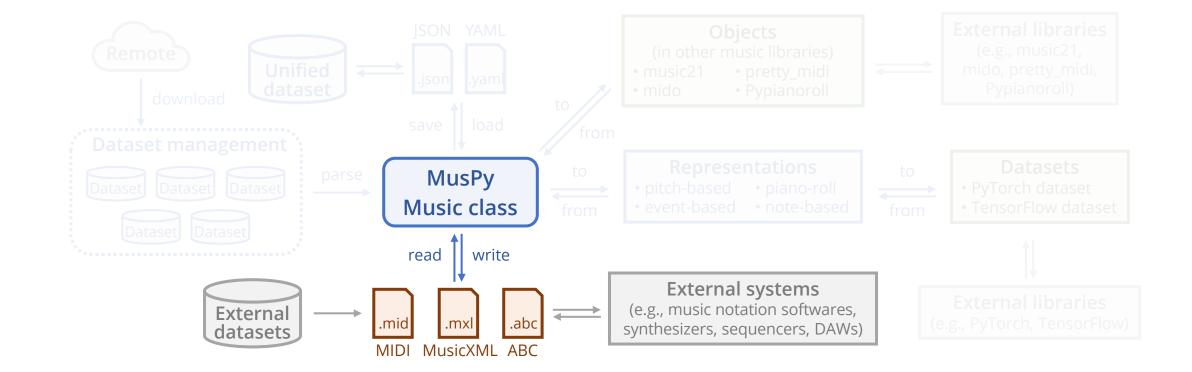


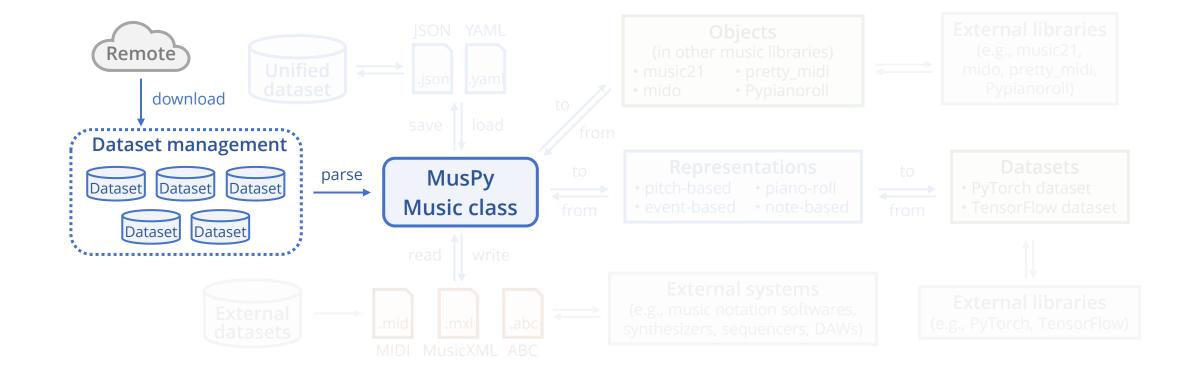
Why MusPy?

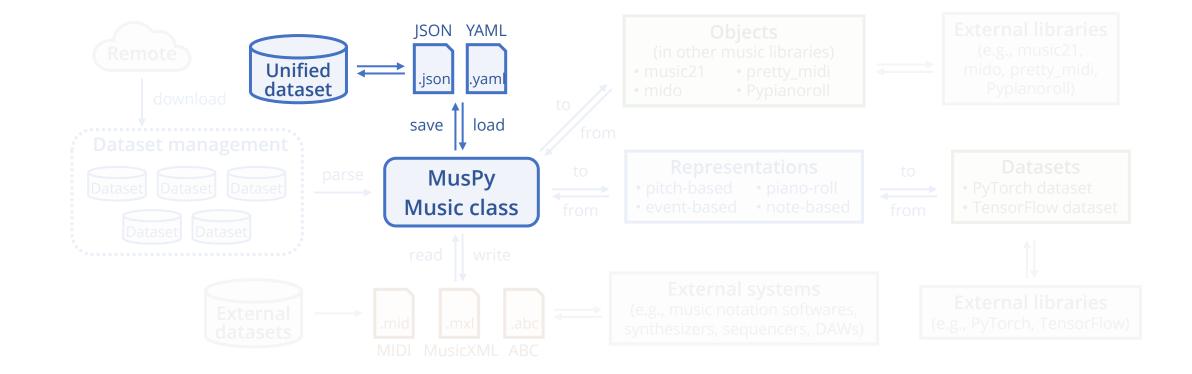


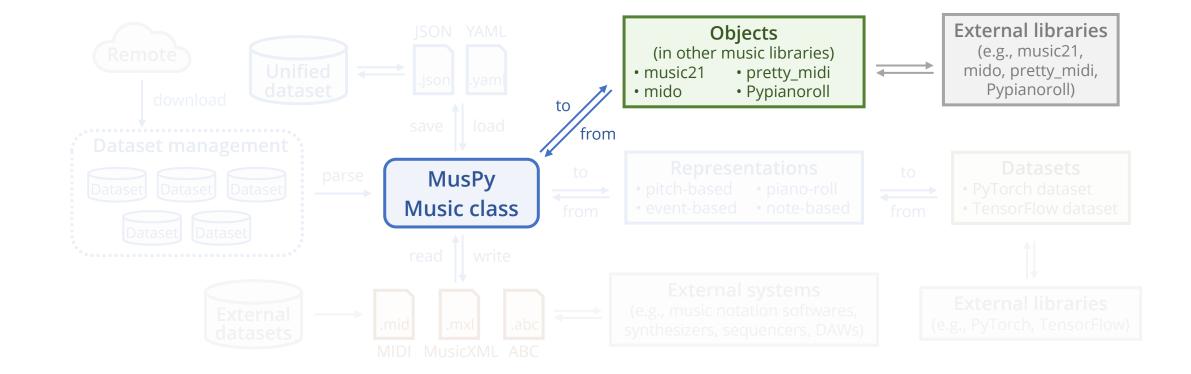


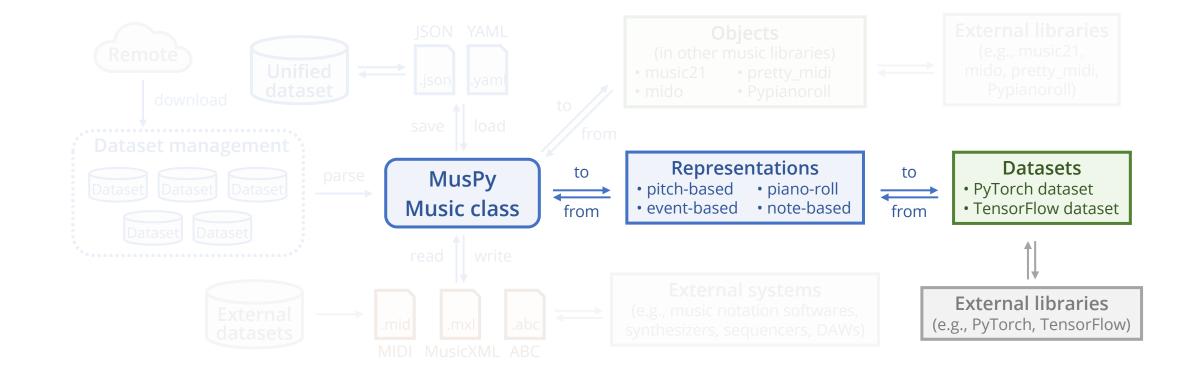




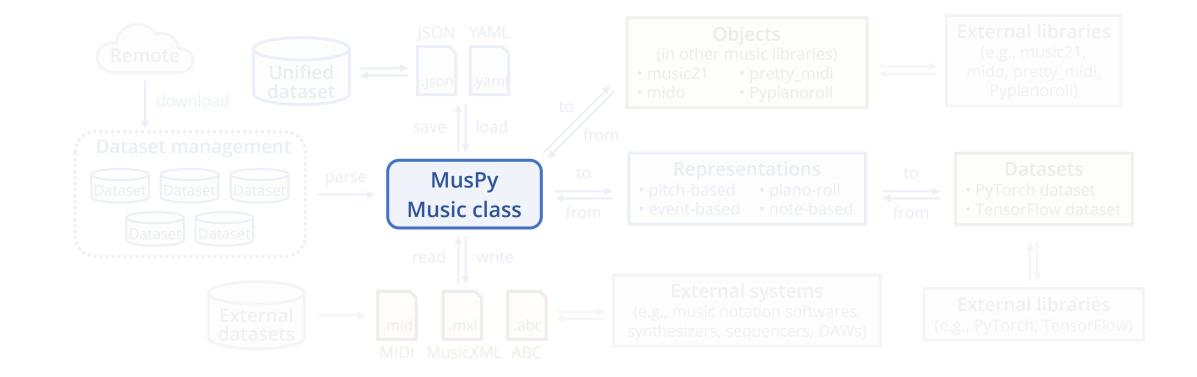




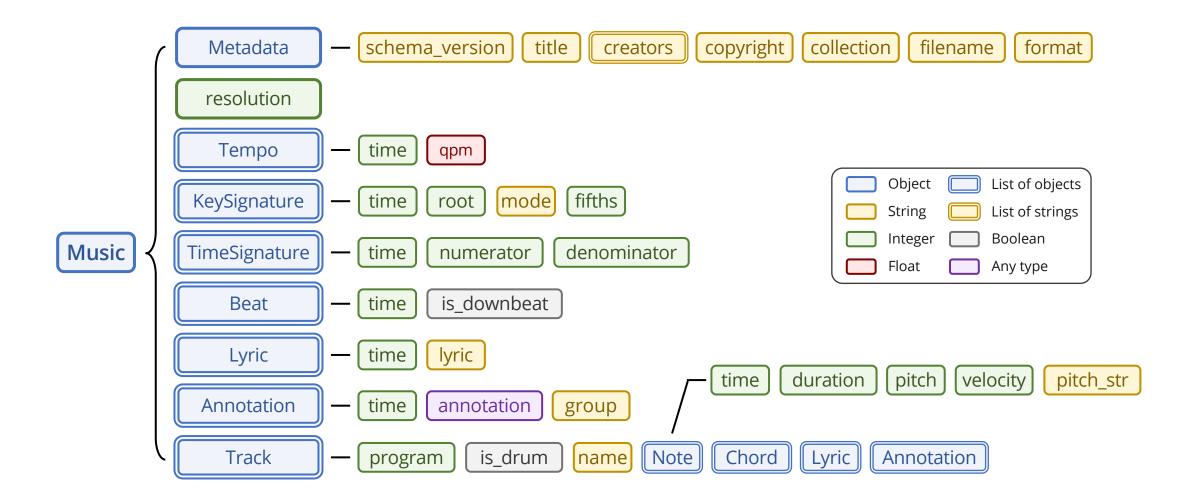




MusPy Music class



MusPy Music class



MusPy native format

- A universal container for symbolic music
- Serializable to JSON/YAML
- Human-readable and machine-friendly

```
metadata:
  schema_version: "0.0"
 title: Für Elise
  creators: [Ludwig van Beethoven]
  copyright: null
  collection: Example dataset
  source_filename: example.yaml
 source format: yaml
resolution: 24
tempos:
  - {time: 0, qpm: 72}
key signatures:
 - {time: 0, root: 9, mode: minor, fifths: 0}
time signatures:
 - {time: 0, numerator: 3, denominator: 8}
beats:
  - {time: 0, is_downbeat: false}
 - {time: 12, is_downbeat: true}
 - {time: 24, is downbeat: false}
 - {time: 36, is downbeat: false}
 - {time: 48, is_downbeat: true}
lyrics:
  - {time: 0, lyric: Nothing but a lyric}
annotations:
 - {time: 0, annotation: Nothing but an annotation, group: null}
tracks:
  - program: 0
    is drum: false
    name: Melody
    notes:
      - {time: 0, duration: 6, pitch: 76, velocity: 64}
      - {time: 6, duration: 6, pitch: 75, velocity: 64}
      - {time: 12, duration: 6, pitch: 76, velocity: 64}
      - {time: 18, duration: 6, pitch: 75, velocity: 64}
      - {time: 24, duration: 6, pitch: 76, velocity: 64
      - {time: 30, duration: 6, pitch: 71, velocity: 64}
      - {time: 36, duration: 6, pitch: 74, velocity: 64}
      - {time: 42, duration: 6, pitch: 72, velocity: 64}
      - {time: 48, duration: 6, pitch: 69, velocity: 64}
    chords: null
    lyrics:
      - {time: 0, lyric: Nothing but a lyric}
    annotations:
      - {time: 0, annotation: Nothing but an annotation, group: null}
```

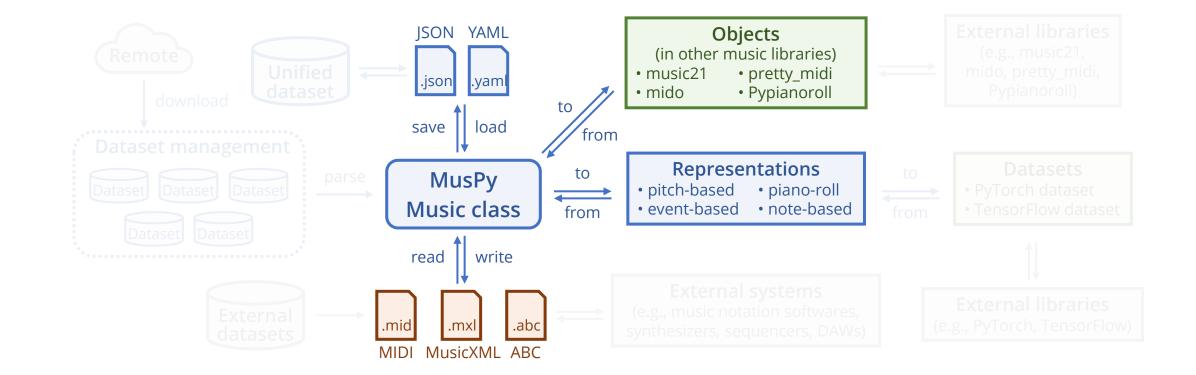
Comparisons to MIDI & MusicXML

	MIDI	MusicXML	MusPy
Sequential timing	\checkmark		\checkmark
Playback velocities	\checkmark	Δ	\checkmark
Program information	\checkmark	Δ	\checkmark
Layout information		\checkmark	
Note beams and slurs		\checkmark	
Song/source meta data	\bigtriangleup	\checkmark	\checkmark
Track/part information	\bigtriangleup	\checkmark	\checkmark
Dynamic/tempo markings		\checkmark	\checkmark
Concept of notes		\checkmark	\checkmark
Measure boundaries		\checkmark	\checkmark
Human readability		\bigtriangleup	\checkmark

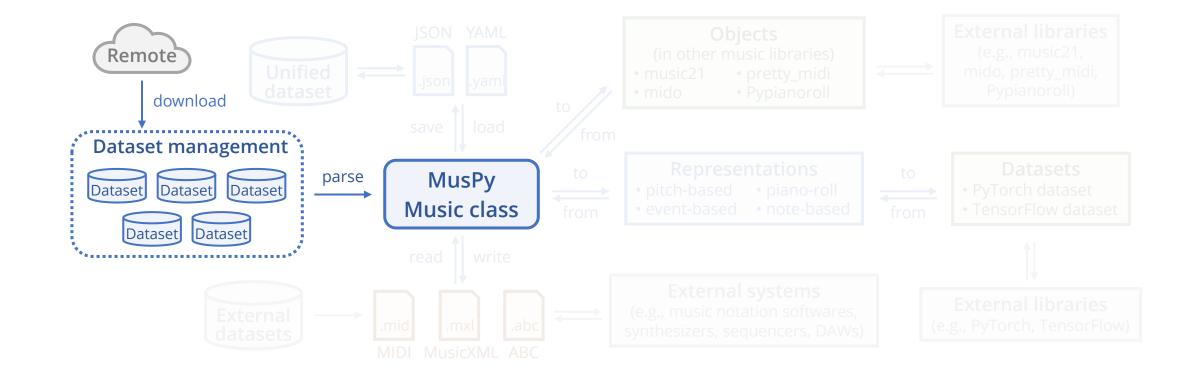
Comparisons to MIDI & MusicXML

	MIDI	MusicXML	MusPy
Sequential timing	\checkmark		\checkmark
Playback velocities	\checkmark	\bigtriangleup	\checkmark
Program information	\checkmark	\bigtriangleup	\checkmark
Layout information		\checkmark	
Note beams and slurs		\checkmark	
Song/source meta data	\bigtriangleup	\checkmark	\checkmark
Track/part information	\bigtriangleup	\checkmark	\checkmark
Dynamic/tempo markings		\checkmark	\checkmark
Concept of notes		\checkmark	\checkmark
Measure boundaries		\checkmark	\checkmark
Human readability		Δ	\checkmark

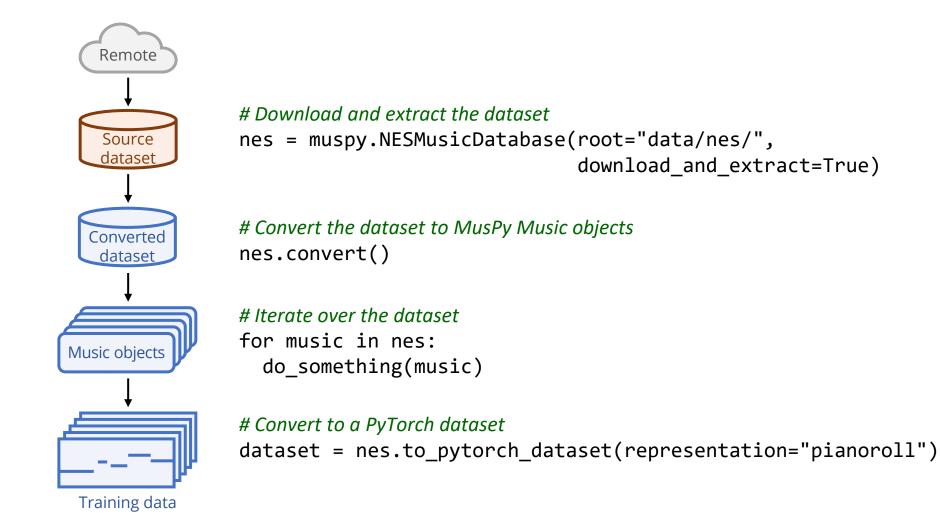
I/O interfaces



Dataset management



Dataset management – An example



Datasets supported

Dataset	Format	Hours	Songs	Genre	Melody	Chords	Multitrack
Lakh MIDI Dataset	MIDI	>5000	174,533	misc	Δ	Δ	Δ
MAESTRO Dataset	MIDI	201.21	1,282	classical			
Wikifonia Lead Sheet Dataset	MusicXML	198.40	6,405	misc	\checkmark	\checkmark	
Essen Folk Song Dataset	ABC	56.62	9,034	folk	\checkmark	\checkmark	
NES Music Database	MIDI	46.11	5,278	game	\checkmark		\checkmark
MusicNet Dataset	MIDI	30.36	323	classical			Δ
Hymnal Tune Dataset	MIDI	18.74	1,756	hymn	\checkmark		
Hymnal Dataset	MIDI	17.50	1,723	hymn			
music21's Corpus	misc	16.86	613	misc	Δ		Δ
EMOPIA Dataset	MIDI	10.98	387	рор			
Nottingham Database	ABC	10.54	1,036	folk	\checkmark	\checkmark	
music21's JSBach Corpus	MusicXML	3.46	410	classical			\checkmark
JSBach Chorale Dataset	MIDI	3.21	382	classical			\checkmark
Haydn Op.20 Dataset	Humdrum	1.26	24	classical		\checkmark	

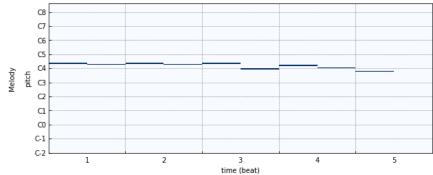
Result analysis tools

Rhythm-related metrics

- empty_beat_rate
- empty_measure_rate
- drum_in_pattern_rate
- drum_pattern_consistency
- groove_consistency

Audio rendering

Piano-roll visualization



Pitch-related metrics

- pitch_range
- n_pitches_used
- n_pitch_classes_used
- polyphony
- polyphony_rate
- pitch_in_scale_rate
- scale_consistency
- pitch_entropy
- pitch_class_entropy

Related work

- Magenta
 - Provides several model instances in TensorFlow
- music21 (Cuthbert and Ariza 2010)
 - Provides powerful tools for computational musicology
 - Comes with its own corpus
- jSymbolic (McKay and Fujinaga 2006)
 - Extracts statistical information from symbolic music data

Magenta, <u>https://magenta.tensorflow.org/</u>.

Cuthbert and Ariza, "A Toolkit for Computer-Aided Musicology and Symbolic Music Data," *Proc. ISMIR*, 2010. McKay and Fujinaga, "jSymbolic: A Feature Extractor for MIDI Files," *Proc. ICMC*, 2006.

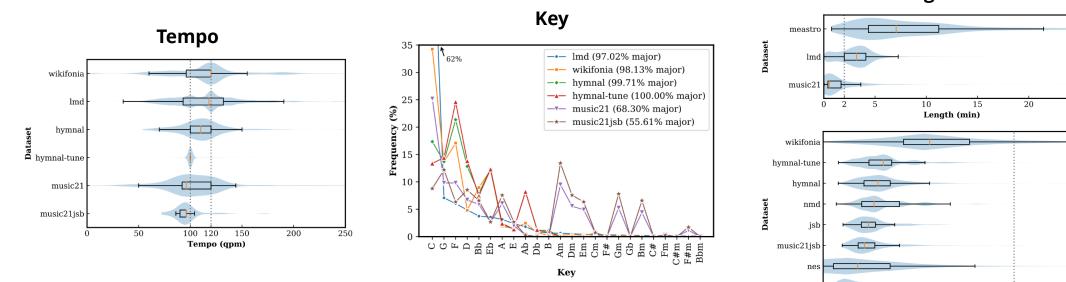
Summary

MusPy provides

- Dataset management
- Data I/O for common formats
- Interfaces to common music libraries
- Implementations of common music representations
- Result analysis tools

Experiments

Dataset analysis



Length

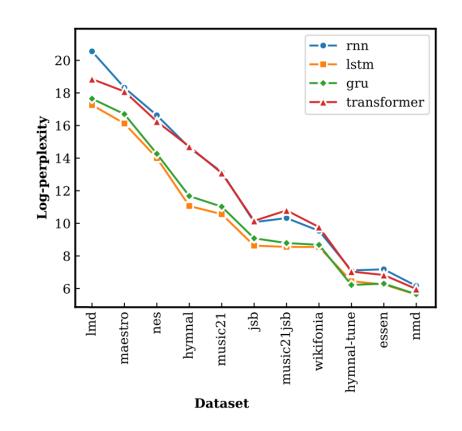
essen

Length (sec)

Music language models

Settings

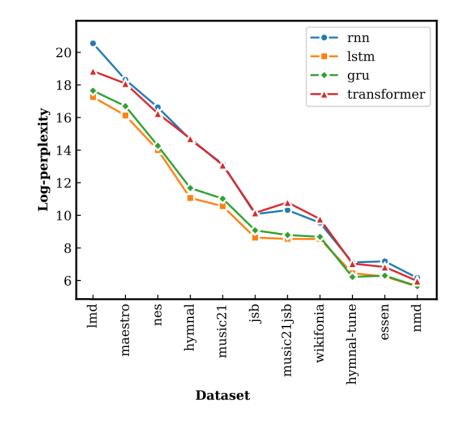
- Implement four autoregressive models
 - RNN, LSTM, GRU and Transformer
- Use a MIDI-like event representation
- Measure the perplexity of 1000 test samples



Music language models

Results

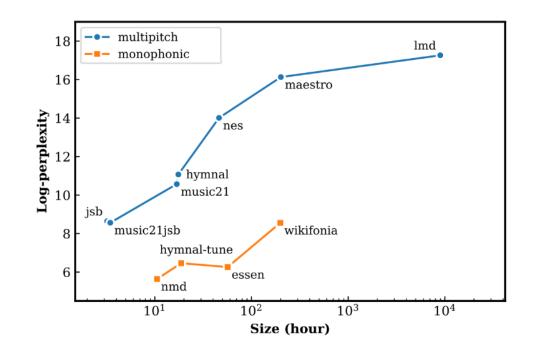
• All models have similar tendencies



Music language models

Results

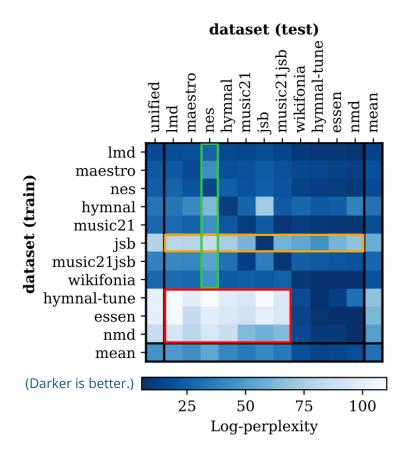
- All models have similar tendencies.
- Perplexity is positively correlated to dataset size.
 - Within each group (multipitch vs monophonic)



Measuring cross-dataset generalizability

Settings

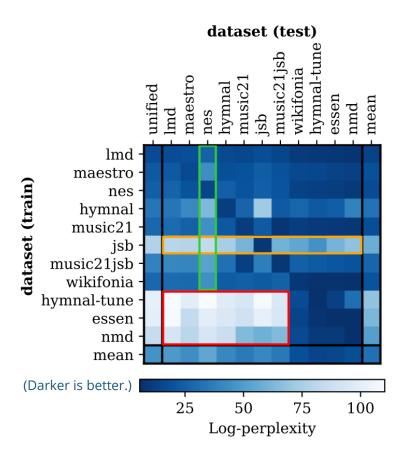
- 1. Train the model on a dataset \mathcal{D}
- 2. Test the trained model on dataset \mathcal{D}'
- 3. Repeat for all 11x11 pairs of $(\mathcal{D}, \mathcal{D}')$



Measuring cross-dataset generalizability

Results

- Cross-dataset generalizability is asymmetric.
- A model trained on a multi-pitch dataset generalizes well to a monophonic dataset.
 - Yet not the other way around (red block)



Combining heterogeneous datasets

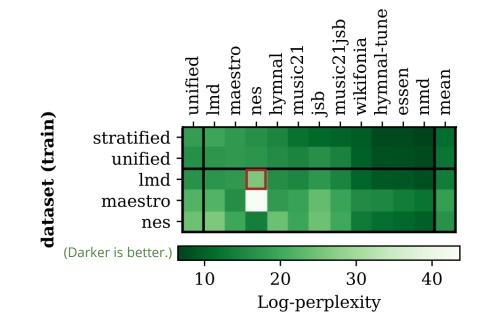
Settings

Unified

Sample uniformly from the pool of all data of different datasets

Stratified

Pick a dataset randomly and sample uniformly from that dataset (to alleviate data imbalance issue)



Combining heterogeneous datasets

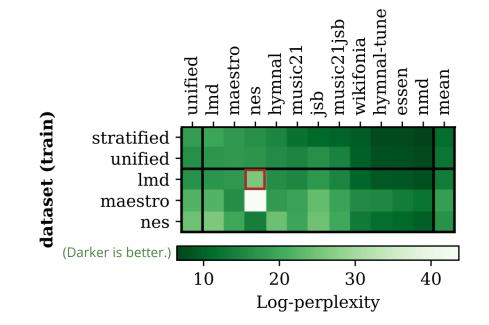
Results

Unified

The model trained on the unified dataset yields a lower perplexity on each dataset.

Stratified

Stratified sampling reduce perplexities on most datasets with a sacrifice of an increased perplexity on LMD. (LMD is the largest dataset.)



Summary

- Measured the relative diversities of 11 datasets
- Analyzed the cross-dataset generalizabilities of a music generation system
- Showed how combining heterogenous datasets can help improve generalizability

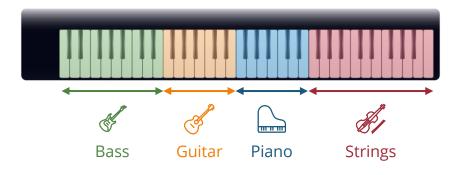
Case Study I – Automatic Instrumentation

"Towards Automatic Instrumentation by Learning to Separate Parts in Symbolic Multitrack Music" (ISMIR 2021)

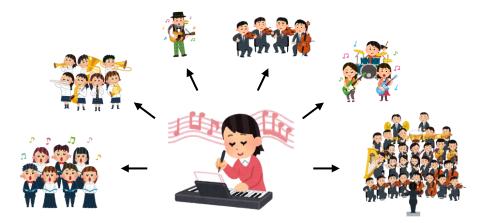
Hao-Wen Dong Chris Donahue Taylor Berg-Kirkpatrick Julian McAuley

Motivation

• Automatic instrumentation – Dynamically assign instruments to notes in solo music

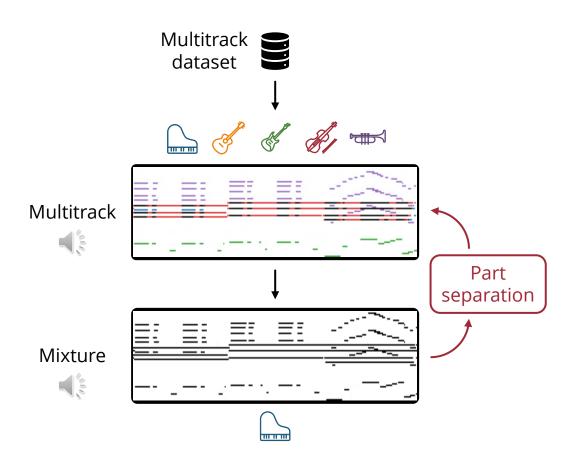


Assistive composing tools



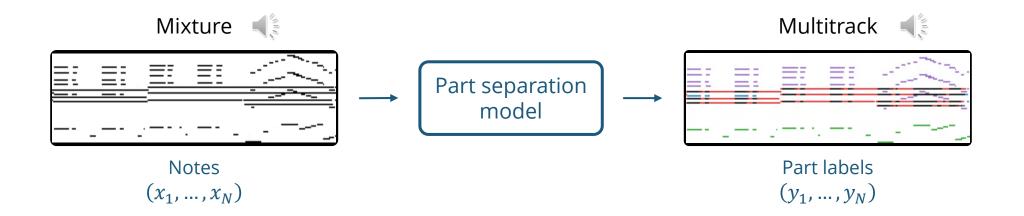
Overview

- Acquire paired data
- Train a part separation model
- Perform automatic instrumentation



Problem formulation

- Part separation Separate parts from their mixture in multitrack music
- Frame as a sequential multiclass classification problem



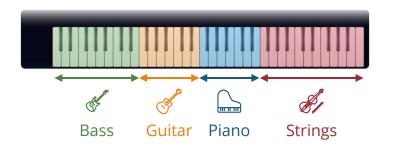
Models

Online models

- LSTMs
- Transformer decoders

Offline models

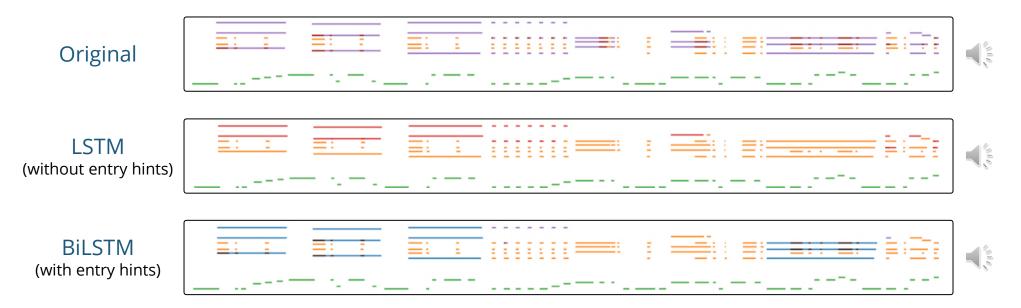
- BiLSTMs
- Transformer encoders



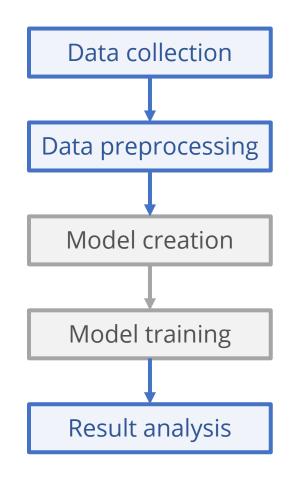


Demo

• Produce convincing alternative instrumentations for an existing arrangement



MusPy in the pipeline



- Download datasets
- Convert data into MusPy JSON format
- Adjust temporal resolution
- Map instrument names
- Convert data into note representation

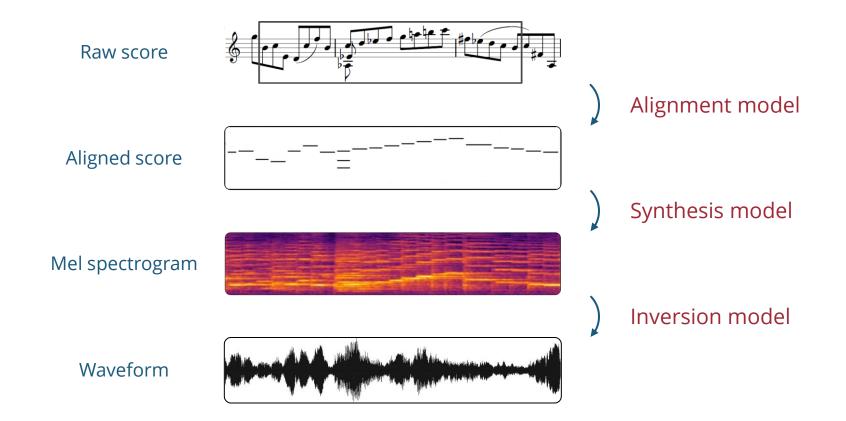
- Save the results as MIDI files
- Synthesize the results into audio
- Visualize the results in the piano roll form

Case Study II – Music Performance Synthesis

"Deep Performer: Score-to-Audio Music Performance Synthesis" (ICASSP 2022)

Hao-Wen Dong Cong Zhou Taylor Berg-Kirkpatrick Julian McAuley

Overview



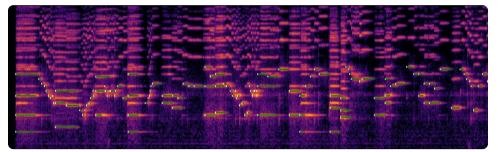
Bach Violin Dataset

- Bach's sonatas and partitas for solo violin (BWV 1001–1006)
- 6.7 hours, 17 violinists

Alignment derivation

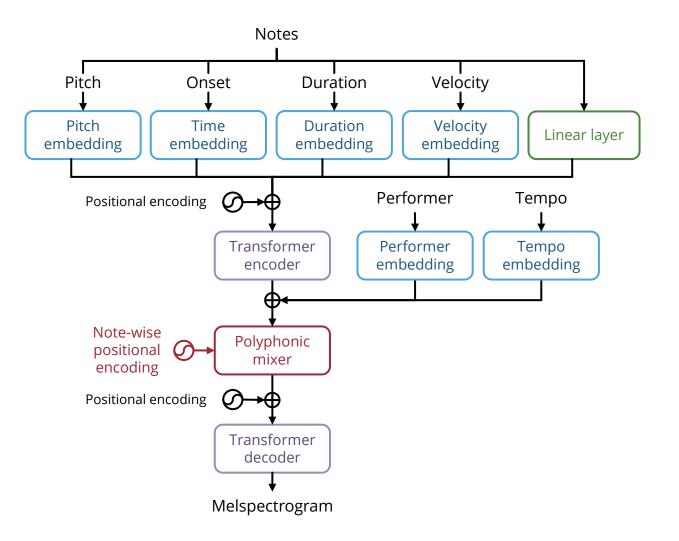
- 1. Synthesize the scores using FluidSynth (a free software synthesizer)
- 2. Run dynamic time warping on the spectrograms (of the recording & synthesized audio)

Alignment result



Synthesis model

• A transformer network based on FastSpeech (Ren et al. 2019)



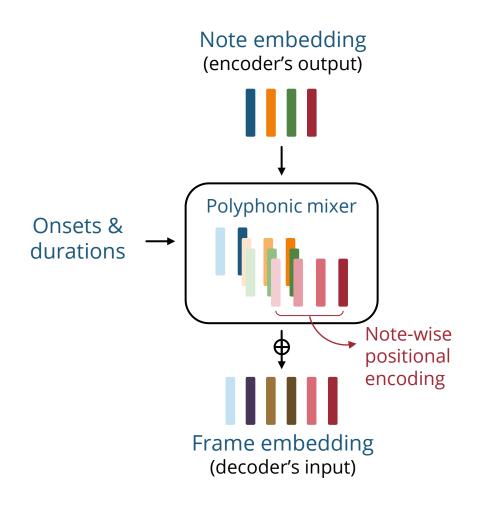
Methods

• Polyphonic mixer

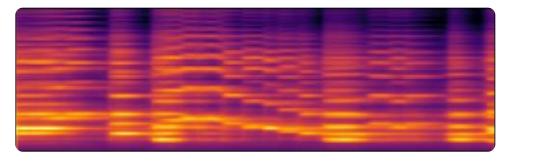
Extend the state expansion mechanism to handle polyphonic inputs

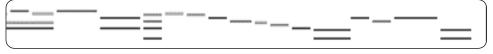
Note-wise positional encoding

Provide positional information within each note for a fine-grained conditioning



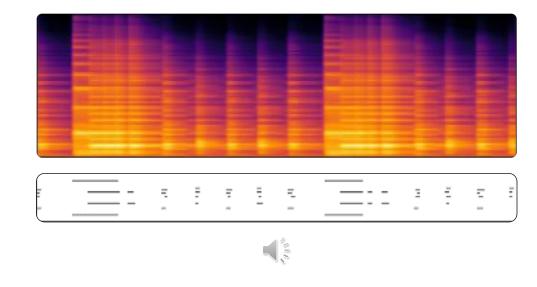
Demo





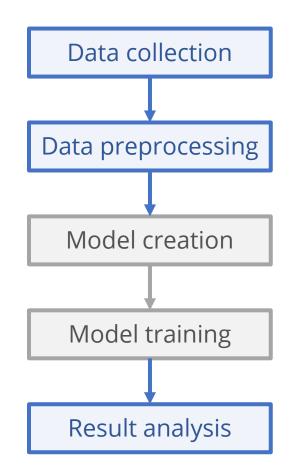
Piano

(trained on MAESTRO Dataset)



More samples can be found at <u>salu133445.github.io/deepperformer/</u>. Hawthorne et al., "Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset," *Proc. ICLR*, 2019.

MusPy in the pipeline



- Convert data into MusPy JSON format
- Synthesize the data for alignment purpose
- Convert data into note representation

• Visualize the results in the piano roll form

Conclusion

Conclusion

- Presented a Python library for processing symbolic music
- Showcased how MusPy enabled large-scale cross-dataset analysis
 - Relative diversities of the 11 supported datasets
 - Cross-dataset generalizabilities of a music generation system
- Studied how we used MusPy in two recent projects
 - Automatic instrumentation
 - Music performance synthesis

Thank you!

pip install muspy

Learn more at <u>salu133445.github.io/muspy/</u>

