
A toolkit for symbolic music generation
Hao-Wen Dong Ke Chen Julian McAuley Taylor Berg-Kirkpatrick

University of California San Diego

Introduction

I/O Interfaces

Datasets Analysis Tools

Dataset Analysis

Experiments

MusPy is an open source Python library for symbolic music generation. It
provides essential tools for developing a music generation system, including
dataset management, data I/O, data preprocessing and model evaluation.

MusPy
Music class

.mid

MIDI

.json

JSON

save load

parse

External
datasets

Representations
• pitch-based • piano-roll
• event-based • note-basedfrom

to

.mxl

MusicXML

External systems
(e.g., music notation softwares,
synthesizers, sequencers, DAWs)

External libraries
(e.g., PyTorch, TensorFlow)

Unified
dataset

from

to

Remote

Dataset Dataset Dataset

Dataset Dataset

Datasets
• PyTorch dataset
• TensorFlow dataset

download

Objects
(in other music libraries)

• music21 • pretty_midi
• mido • Pypianoroll

External libraries
(e.g., music21,

mido, pretty_midi,
Pypianoroll)to

from

read write

Dataset management

.abc

ABC

.yaml

YAML

Figure 1: System diagram of MusPy.

• Native JSON and YAML formats

• Common symbolic music formats

• Other symbolic music libraries

• Common representations

• Simple commands for downloading
and building a dataset

• Interfaces to PyTorch and
TensorFlow

Table 1: Comparisons of datasets currently
supported by MusPy.

• Evaluation metrics

• Score and piano-roll visualizations

• Audio rendering

Conclusion

• We presented MusPy—a new toolkit that provides essential tools for
developing music generation systems.

• We conducted a statistical analysis and experiments on the supported
datasets to analyze their relative diversities and cross-dataset generalizabilities.

• We showed that combining heterogeneous datasets could help improve
generalizability of a machine learning model.

MusPy Music Class

• Core class of MusPy

• Universal container of symbolic music

• Serializable to JSON/YAML format

Figure 2: Examples of (a) score and (b)
piano-roll visualizations.

(a)

(b)

(a)

(b)

(c)

Figure 3: Distributions of (a) length, (b) initial
tempo and (c) key for different datasets.

Figure 5: Perplexities for the LSTM model versus dataset size.

Figure 4: Perplexities for different
models on different datasets.

Figure 6: Cross-dataset generalizability results.

Download and extract the dataset
nes = muspy.NESMusicDatabase(
root="dataG/nes/",
download_and_extract=True)

Convert the dataset to MusPy Music objects
nes.convert()

Iterate over the dataset
for music in nes:
do_something(music)

Convert to a PyTorch dataset
dataset = nes.to_pytorch_dataset(
representation="pianoroll")

Remote

Source
dataset

Converted
dataset

Music objects

Training data

(a) Training data preparation pipeline

Iterate over the generated samples
for sample in samples:

Convert samples to MusPy Music objects
music = from_representation(
sample, "pianoroll")

Write the Music objects to MIDI files
music.write(str(i) + ".mid")

Generated data

Music objects

.mid

(b) Result writing pipeline

Examples

• Representation—event representation with 128 note-on, 128 note-off, 100
time-shift and 1 end-of-sequence events

• Data—64 time steps per sample (4 time steps per quarter note)

• Training—predict next event given the previous ones using cross entropy loss

• Evaluation—compute the perplexity on 1000 random samples in the test set

Want to give MusPy a try?

pip install muspy

