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MusPy is an open source Python library for symbolic music generation. It 
provides essential tools for developing a music generation system, including 
dataset management, data I/O, data preprocessing and model evaluation.
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Figure 1: System diagram of MusPy.

• Native JSON and YAML formats

• Common symbolic music formats

• Other symbolic music libraries 

• Common representations

• Simple commands for downloading 
and building a dataset

• Interfaces to PyTorch and
TensorFlow

Table 1:  Comparisons of datasets currently 
supported by MusPy.

• Evaluation metrics

• Score and piano-roll visualizations

• Audio rendering

Conclusion

• We presented MusPy—a new toolkit that provides essential tools for 
developing music generation systems.

• We conducted a statistical analysis and experiments on the supported 
datasets to analyze their relative diversities and cross-dataset generalizabilities.

• We showed that combining heterogeneous datasets could help improve 
generalizability of a machine learning model.

MusPy Music Class

• Core class of MusPy

• Universal container of symbolic music

• Serializable to JSON/YAML format

Figure 2: Examples of (a) score and (b) 
piano-roll visualizations.
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Figure 3:  Distributions of (a) length, (b) initial 
tempo and (c) key for different datasets.

Figure 5: Perplexities for the LSTM model versus dataset size.

Figure 4: Perplexities for different 
models on different datasets.

Figure 6: Cross-dataset generalizability results.

# Download and extract the dataset
nes = muspy.NESMusicDatabase(
root="dataG/nes/",
download_and_extract=True)

# Convert the dataset to MusPy Music objects
nes.convert()

# Iterate over the dataset
for music in nes:
do_something(music)

# Convert to a PyTorch dataset
dataset = nes.to_pytorch_dataset(
representation="pianoroll")
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(a) Training data preparation pipeline

# Iterate over the generated samples
for sample in samples:

# Convert samples to MusPy Music objects
music = from_representation(
sample, "pianoroll")

# Write the Music objects to MIDI files
music.write(str(i) + ".mid")
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(b) Result  writing pipeline

Examples

• Representation—event representation with 128 note-on, 128 note-off, 100
time-shift and 1 end-of-sequence events

• Data—64 time steps per sample (4 time steps per quarter note)

• Training—predict next event given the previous ones using cross entropy loss

• Evaluation—compute the perplexity on 1000 random samples in the test set

Want to give MusPy a try?

pip install muspy


