MuseGAN: Demonstration of a Convolutional GAN Based Model for Generating Multi-track Piano-rolls

Hao-Wen Dong*, Wen-Yi Hsiao*, Li-Chia Yang, Yi-Hsuan Yang

Music and Audio Computing (MAC) Lab, Research Center for IT Innovation, Academia Sinica, Taipei, Taiwan
salul33445@citi.sinica.edu.tw, s105062581@m105.nthu.edu.tw, [richard40148, yang]@citi.sinica.edu.tw

* These authors contributed equally to this work

Introduction

Challenges for music generation:
- **Temporal dynamics**: music is an art of time with a hierarchical structure
- **Multi-track**: each track (instrument) has its own temporal dynamics but collectively they unfold over time in an interdependent way
- **Discrete valued**: it's a sequence of events, not continuous values

MuseGAN (multi-track sequential generative adversarial network) [1] aims to address these 3 challenges altogether. Key points:
- Use **GAN** (specifically WGAN-GP [2]) to support both "conditional generation" (e.g., following a prime melody) and "generating from scratch", following our previous MidiNet model [3]
- Use **convolutions** (instead of RNNs) for speed
- Use a **bar** (instead of a note) as the basic unit for generation
- Learn from MIDIs (piano-rolls), not lead sheets
- Experiment with a few network designs for the temporal model and for inter- and intra-track modeling

Demo webpage: https://salul33445.github.io/musegan/

Data

The matched subset of the Lakh MIDI dataset [4], after cleansing
- Pop/rock, 4/4 time signature, C key
- Five tracks: bass, drums, guitar, piano, strings (others)
- Get 4-bar phrases by structural feature-based segmentation

We are happy to **share** the data and utility code (go to demo page)!

Proposed Model

Proposed Model

Jamming: Each track has its own generator and discriminator, without any coordination

Composer: All the tracks are generated by one single generator, and critic is given by one discriminator, like a composer or a band leader who evaluate the joint performance of all the musicians (tracks)

Hybrid: Each track is generated independently by its own generator which takes a shared inter-track random vector and a private intra-track random vector as inputs; the result is evaluated by one single discriminator

Modeling the Multi-track Interdependency

Jamming

Each track has its own generator and discriminator, without any coordination

Composer

All the tracks are generated by one single generator, and critic is given by one discriminator, like a composer or a band leader who evaluate the joint performance of all the musicians (tracks)

Hybrid

Each track is generated independently by its own generator which takes a shared inter-track random vector and a private intra-track random vector as inputs; the result is evaluated by one single discriminator

Generation from scratch: Fixed-length phrases are generated by viewing time as an additional dimension to be generated

Track-conditional generation: by learning to follow the temporal structure of a track given a priori

MuseGAN = Temporal models + Multi-track models

Results

1) Sample results (generating from scratch; not cherry-picked):
- The bass is mostly monophonic and playing the lowest pitches
- The drums often have 8- or 16-beat rhythmic patterns
- The other 3 tracks tend to play the chords, and their pitches sometimes overlap (black lines), indicating harmonic relations

2) The generator becomes better along with the training process:

Conclusions

- A new convolutional GAN model is proposed for creating binary-valued multi-track sequences; we use it to generate piano-rolls of pop/rock music by learning from a large set of MIDIs
- Still room for improvement so let's further work on it!

References

