

Deep Performer: Score-to-Audio Music Performance Synthesis

Hao-Wen Dong^{1,2}* Cong Zhou¹ Taylor Berg-Kirkpatrick² Julian McAuley²

¹ Dolby Laboratories ² University of California San Diego

 * Work done during an internship at Dolby

UC San Diego

Introduction

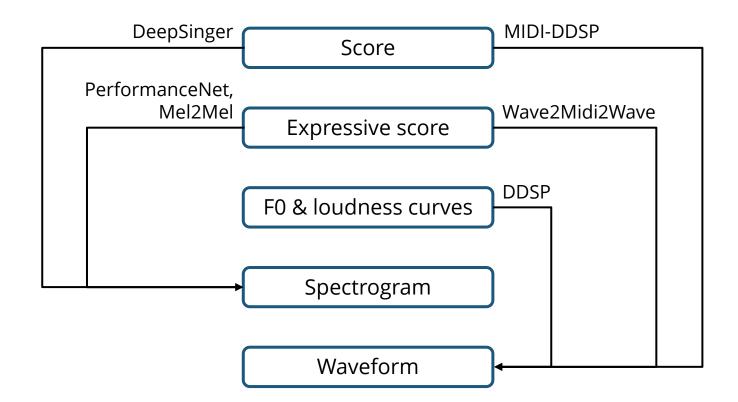
Music performance synthesis

- **Goal** Synthesize a natural performance from a musical score
- Traditional synthesizers
 - Require costly samples (recordings of individual notes)
 - Do not model different playing styles and performative factors
- Can we advance music synthesis with deep neural networks?

Challenges

- Lack of paired training data
 - Hard to acquire paired data of musical scores and their recordings
 - Need to align the scores and the recordings
- Music often contains polyphony and long notes
 - Need to handle concurrent notes in the model
 - Need to provided fine-grained conditioning to the model

Prior work



Wang and Yang, "PerformanceNet: Score-to-Audio Music Generation with Multi-Band Convolutional Residual Network," *Proc. AAAI*, 2019.
Hawthorne et al., "Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset," *Proc. ICLR*, 2019.
Kim et al., "Neural Music Synthesis for Flexible Timbre Control," *Proc. ICASSP*, 2019.
Ren et al., "DeepSinger: Singing Voice Synthesis with Data Mined From the Web," *Proc. KDD*, 2019.
Engel et al., "DDSP: Differentiable Digital Signal Processing," *Proc. ICLR*, 2020.
Wu et al., "MIDI-DDSP: Detailed Control of Musical Performance via Hierarchical Modeling," *Proc. ICLR*, 2022.

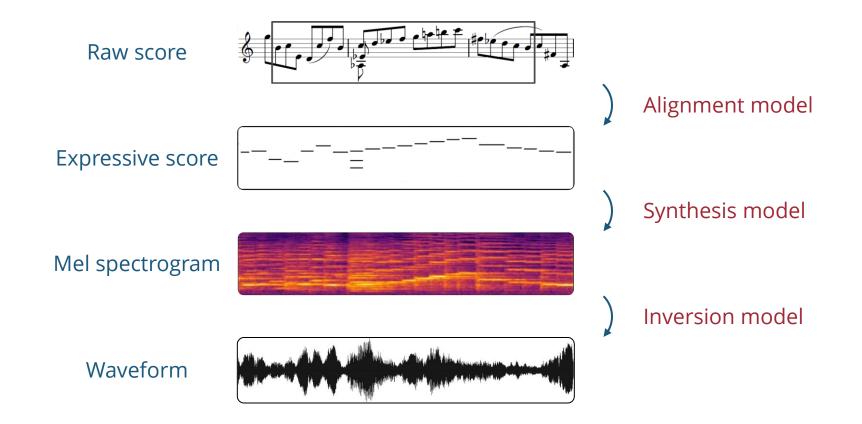
Prior work

Model	Unaligned inputs	Polyphonic inputs	Real recordings
PerformanceNet (Wang & Yang 2019)		\checkmark	\checkmark
Wave2Midi2Wave (Hawthorne et al. 2019)		\checkmark	\checkmark
Mel2Mel (Kim et al. 2019)		\checkmark	
DeepSinger (Ren et al. 2019)	\checkmark		\checkmark
DDSP (Engel et al. 2020)			\checkmark
MIDI-DDSP (Wu et al. 2022)	\checkmark	\checkmark	\checkmark
Ours	\checkmark	\checkmark	\checkmark

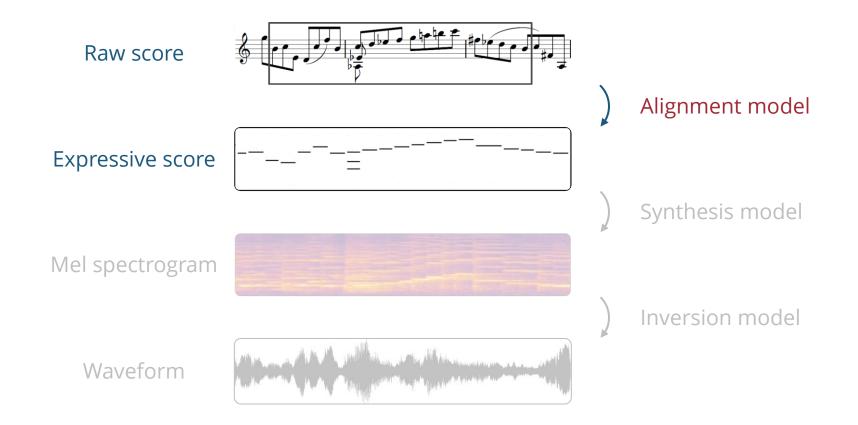
Wang and Yang, "PerformanceNet: Score-to-Audio Music Generation with Multi-Band Convolutional Residual Network," *Proc. AAAI*, 2019.
Hawthorne et al., "Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset," *Proc. ICLR*, 2019.
Kim et al., "Neural Music Synthesis for Flexible Timbre Control," *Proc. ICASSP*, 2019.
Ren et al., "DeepSinger: Singing Voice Synthesis with Data Mined From the Web," *Proc. KDD*, 2019.
Engel et al., "DDSP: Differentiable Digital Signal Processing," *Proc. ICLR*, 2020.
Wu et al., "MIDI-DDSP: Detailed Control of Musical Performance via Hierarchical Modeling," *Proc. ICLR*, 2022.

Model

Overview

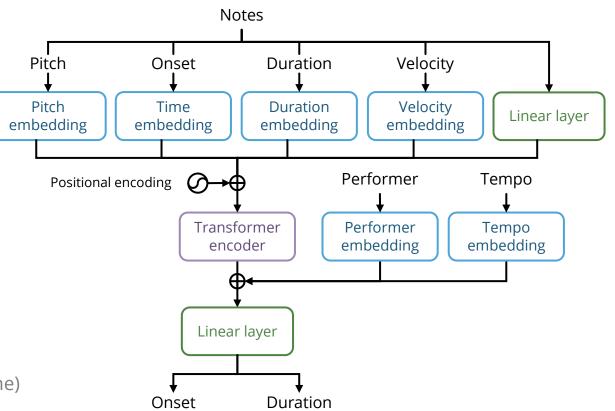


Alignment model

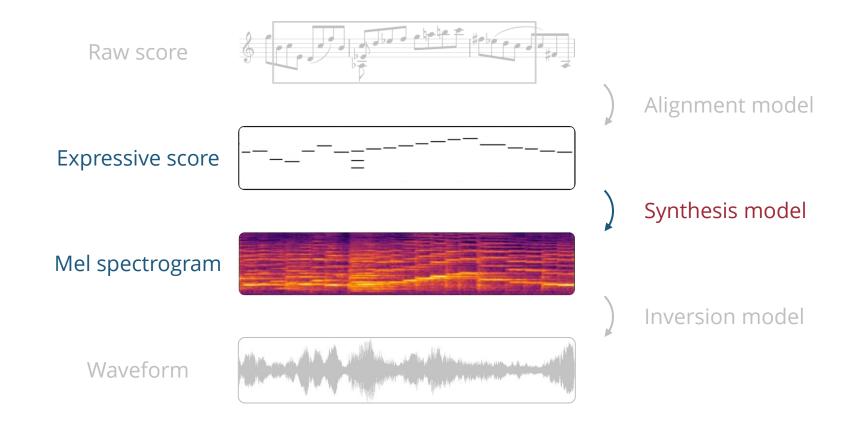


Alignment model

- A transformer encoder network
- Input
 - Note specified by its pitch, onset, duration and velocity
 - Performer ID
 - Tempo class
- Output
 - Expressive onset and duration (unit: frame)

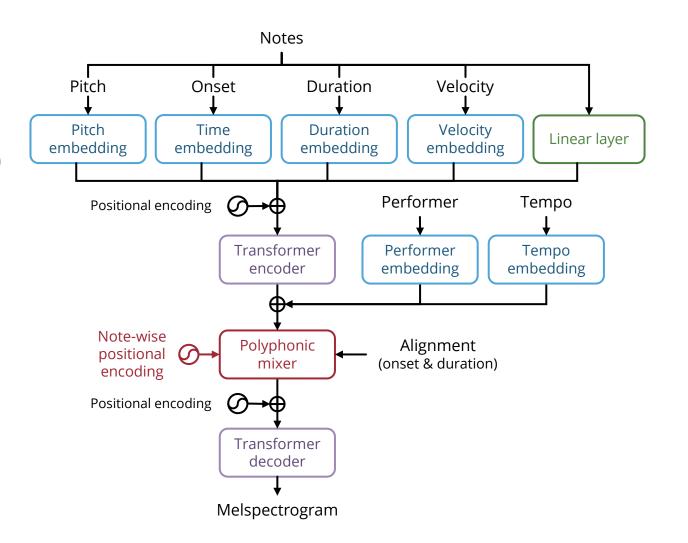


Synthesis model



Synthesis model

- A transformer network
- Based on FastSpeech (Ren et al. 2019)
- Input
 - Note specified by its pitch, onset, duration and velocity
 - Performer ID
 - Tempo class
 - Expressive onset and duration
- Output
 - Melspectrogram frames



Proposed mechanisms

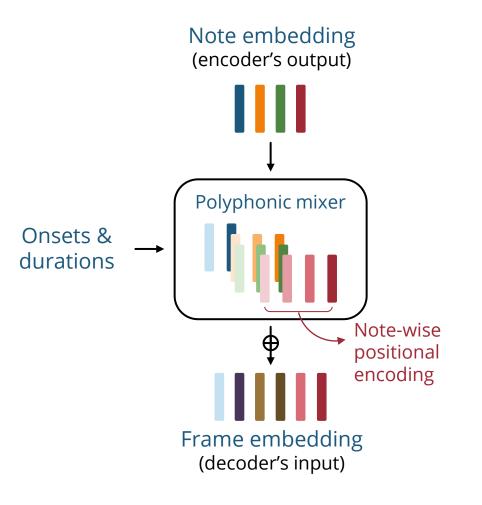
• Polyphonic mixer

Extend the state expansion mechanism to handle polyphonic inputs

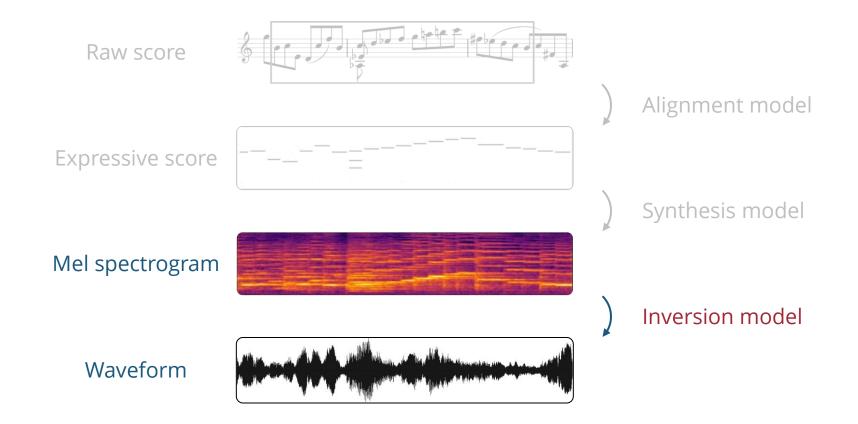
Note-wise positional encoding

Provide positional information within each note for a fine-grained conditioning

$$\mathbf{v}_{frame} = (1 + p\mathbf{w}) \odot \mathbf{v}_{note}$$
frame embedding learnable weight note embedding



Inversion model



Inversion model

• Hifi-GAN model (Kong et al. 2020)

Based on generative adversarial networks (GANs)

Data

Bach Violin Dataset

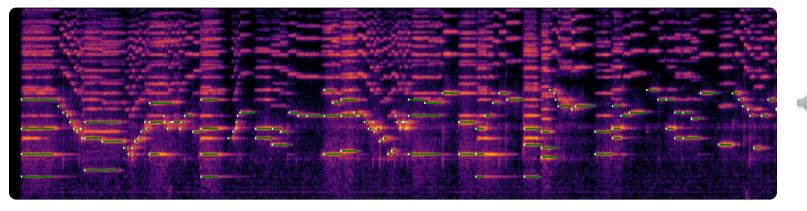
- Bach's sonatas and partitas for solo violin (BWV 1001–1006)
- 6.7 hours, 17 violinists

Dataset available at <u>salu133445.github.io/bach-violin-dataset/</u>

Alignment derivation

- 1. Synthesize the scores using FluidSynth (a free software synthesizer)
- 2. Run dynamic time warping on the spectrograms (of the recording & synthesized audio)

Alignment result



Source code available at <u>github.com/salu133445/bach-violin-dataset</u>

Experiments & Results

Implementation details

• Audio

• mono, 16 kHz

Melspectrogram

• 80 Mel bands, STFT filter length: 1024, hop length: 256, window size: 1024

Alignment model

• 3 encoder layers (128 hidden neurons, 2 attention heads, 256 FFN hidden neurons)

Synthesis model

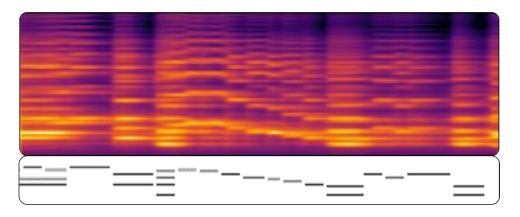
• 3 encoder layers, 6 decoder layers (128 hidden neurons, 2 attention heads, 512 FFN hidden neurons)

Training

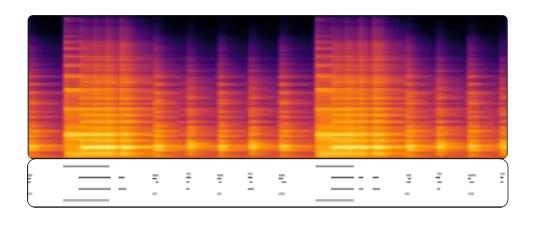
• Adam optimizer (Kingma & Ba 2015)

Demo

Violin (trained on Bach Violin Dataset)

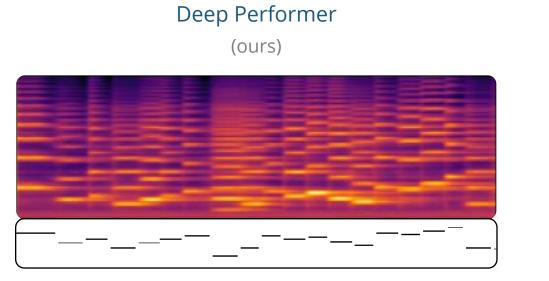


Piano (trained on MAESTRO Dataset)



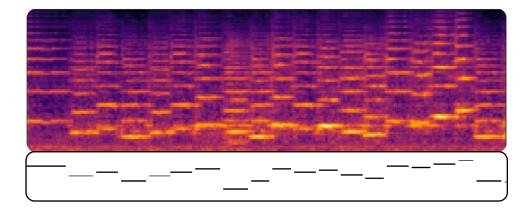
More samples available at salu133445.github.io/deepperformer/

Comparisons to baseline



Hifi-GAN baseline

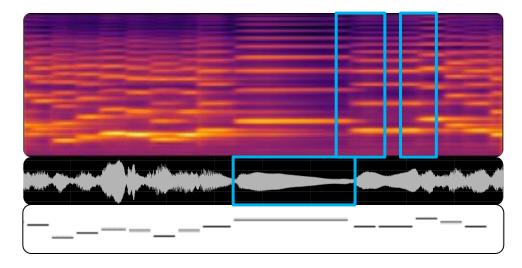
(piano roll conditioned)



More samples available at <u>salu133445.github.io/deepperformer/</u>

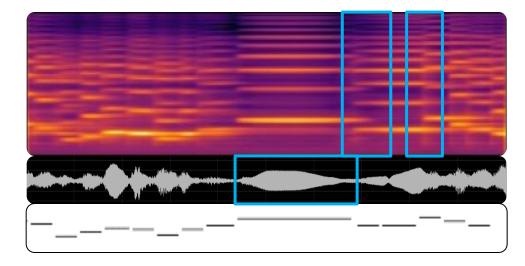
Note-wise positional encoding

With note-wise positional encoding



43

Without note-wise positional encoding



L

More samples available at <u>salu133445.github.io/deepperformer/</u>

Subjective listening test

Model	Violin	Piano
Hifi-GAN baseline	2.57 ± 0.22	1.49 ± 0.17
Deep Performer (ours)	2.58 ± 0.21	2.17 ± 0.24
 w/o note-wise positional encoding 	2.61 ± 0.23	2.37 ± 0.23
 w/o performer embedding 	2.01 ± 0.25	2.26 ± 0.25
- w/o encoder (using piano-roll inputs)	2.22 ± 0.18	1.43 ± 0.16

(mean opinion scores reported)

Future Work

Modeling expressions & playing styles

Musical expressions

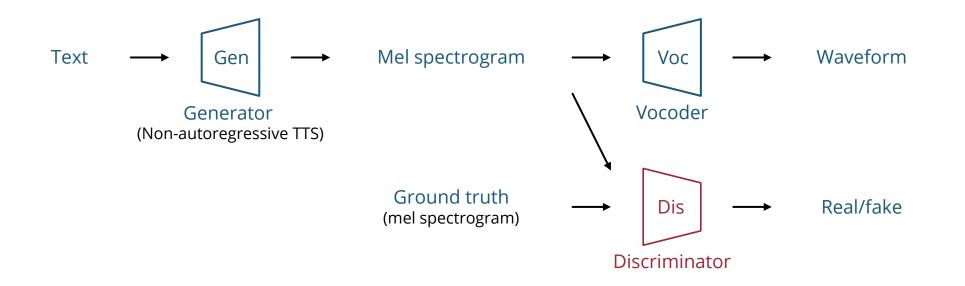
Dynamic, tempo, phrasing, articulation, etc.

Playing styles

Various musical interpretations of the same piece

Incorporating adversarial losses

- Improve the sharpness of the synthesized audio using adversarial losses
 - Promising results in speech synthesis (Yang et al. 2021)



Conclusion

Conclusion

- Presented a new three-stage system for music performance synthesis
- Proposed two mechanisms for a transformer model
 - Polyphonic mixer for handling polyphonic inputs
 - Note-wise positional encoding for providing a fine-grained conditioning
- Showed the effectiveness of the proposed model
 - Outperforms the baseline on the piano dataset
 - Achieve competitive quality on the violin dataset

Thank you!

Learn more at <u>salu133445.github.io/deepperformer/</u>

