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Introduction
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Music performance synthesis

• Goal – Synthesize a natural performance from a musical score

• Traditional synthesizers

 Require costly samples  (recordings of individual notes)

 Do not model different playing styles and performative factors

• Can we advance music synthesis with deep neural networks?
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Challenges

• Lack of paired training data

 Hard to acquire paired data of musical scores and their recordings

 Need to align the scores and the recordings

• Music often contains polyphony and long notes

 Need to handle concurrent notes in the model

 Need to provided fine-grained conditioning to the model
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Prior work

Model Unaligned inputs Polyphonic inputs Real recordings

PerformanceNet (Wang & Yang 2019) ✓ ✓

Wave2Midi2Wave  (Hawthorne et al. 2019) ✓ ✓

Mel2Mel  (Kim et al. 2019) ✓

DeepSinger (Ren et al. 2019) ✓ ✓

DDSP  (Engel et al. 2020) ✓

MIDI-DDSP  (Wu et al. 2022) ✓ ✓ ✓

Ours ✓ ✓ ✓
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Overview
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Alignment model
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Alignment model

• A transformer encoder network

• Input

 Note specified by its pitch, onset, 
duration and velocity

 Performer ID

 Tempo class

• Output

 Expressive onset and duration  (unit: frame)
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Synthesis model
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Synthesis model

• A transformer network

• Based on FastSpeech (Ren et al. 2019)

• Input

 Note specified by its pitch, onset, 
duration and velocity

 Performer ID

 Tempo class

 Expressive onset and duration

• Output

 Melspectrogram frames
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Ren et al., “FastSpeech: Fast, robust and controllable text to speech,” Proc. NeurIPS, 2019.
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Proposed mechanisms

• Polyphonic mixer

Extend the state expansion mechanism to 
handle polyphonic inputs

• Note-wise positional encoding

Provide positional information within each 
note for a fine-grained conditioning

𝐯𝑓𝑟𝑎𝑚𝑒 = 1 + 𝑝𝐰 ⊙ 𝐯𝑛𝑜𝑡𝑒

Polyphonic mixer

Onsets & 
durations

Frame embedding
(decoder’s input)

Note-wise 
positional 
encoding

Note embedding
(encoder’s output)
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Inversion model
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Inversion model

• Hifi-GAN model  (Kong et al. 2020)

 Based on generative adversarial networks (GANs)

15Kong et al., “HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis,” Proc. NeurIPS, 2020.



Data
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Bach Violin Dataset

• Bach’s sonatas and partitas for solo violin (BWV 1001–1006)

• 6.7 hours, 17 violinists
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Dataset available at
salu133445.github.io/bach-violin-dataset/

https://salu133445.github.io/bach-violin-dataset/


Alignment derivation

1. Synthesize the scores using FluidSynth (a free software synthesizer)

2. Run dynamic time warping on the spectrograms  (of the recording & synthesized audio)

18

Alignment result

Source code available at 
github.com/salu133445/bach-violin-dataset

https://github.com/salu133445/bach-violin-dataset


Experiments & Results
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Implementation details

• Audio

 mono, 16 kHz

• Melspectrogram

 80 Mel bands, STFT filter length: 1024, hop length: 256, window size: 1024

• Alignment model

 3 encoder layers (128 hidden neurons, 2 attention heads, 256 FFN hidden neurons)

• Synthesis model

 3 encoder layers, 6 decoder layers (128 hidden neurons, 2 attention heads, 512 FFN hidden neurons)

• Training

 Adam optimizer  (Kingma & Ba 2015)

20Kingma and Ba, “Adam: A method for stochastic optimization,” Proc. ICLR, 2015.



Demo

Violin

(trained on Bach Violin Dataset)

Piano

(trained on MAESTRO Dataset)
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More samples available at 
salu133445.github.io/deepperformer/

https://salu133445.github.io/deepperformer/


Comparisons to baseline
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Deep Performer 

(ours)

Hifi-GAN baseline

(piano roll conditioned)

More samples available at 
salu133445.github.io/deepperformer/

https://salu133445.github.io/deepperformer/


Note-wise positional encoding
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Without note-wise positional encodingWith note-wise positional encoding

More samples available at 
salu133445.github.io/deepperformer/

https://salu133445.github.io/deepperformer/


Subjective listening test

Model Violin Piano

Hifi-GAN baseline 2.57 ± 0.22 1.49 ± 0.17

Deep Performer  (ours) 2.58 ± 0.21 2.17 ± 0.24

- w/o note-wise positional encoding 2.61 ± 0.23 2.37 ± 0.23

- w/o performer embedding 2.01 ± 0.25 2.26 ± 0.25

- w/o encoder  (using piano-roll inputs) 2.22 ± 0.18 1.43 ± 0.16
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(mean opinion scores reported)



Future Work
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Modeling expressions & playing styles

Dynamic, tempo, phrasing, 
articulation, etc.

Musical expressions

Various musical interpretations 
of the same piece

Playing styles
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• Improve the sharpness of the synthesized audio using adversarial losses

 Promising results in speech synthesis (Yang et al. 2021)

Incorporating adversarial losses

Ground truth
(mel spectrogram)

Dis

Discriminator

Text Mel spectrogramGen

Generator
(Non-autoregressive TTS)

Voc

Vocoder

Waveform

Real/fake

Yang et al., “GANSpeech: Adversarial Training for High-Fidelity Multi-Speaker Speech Synthesis,” Proc. INTERSPEECH, 2021. 27



Conclusion
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Conclusion

• Presented a new three-stage system for music performance synthesis

• Proposed two mechanisms for a transformer model

 Polyphonic mixer for handling polyphonic inputs

 Note-wise positional encoding  for providing a fine-grained conditioning

• Showed the effectiveness of the proposed model

 Outperforms the baseline on the piano dataset

 Achieve competitive quality on the violin dataset
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Thank you!

Learn more at salu133445.github.io/deepperformer/
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https://salu133445.github.io/deepperformer/

