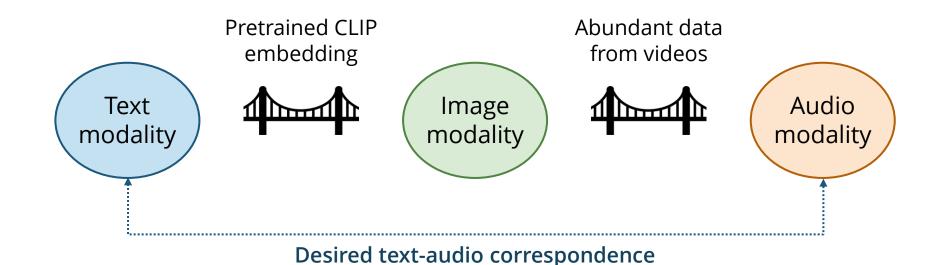


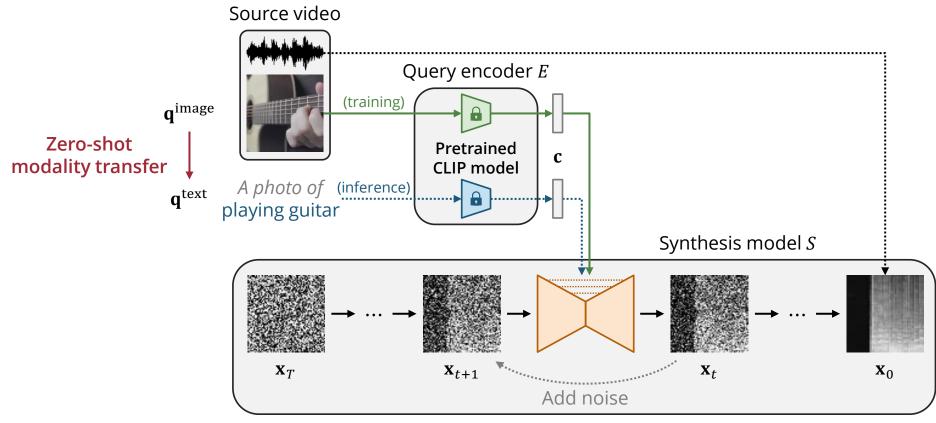
CLIPSynth: Learning Text-to-audio Synthesis from Videos using CLIP and Diffusion Models

Hao-Wen Dong^{1,2}* Gunnar A. Sigurdsson¹ Chenyang Tao¹ Jiun-Yu Kao¹ Yu-Hsiang Lin¹ Anjali Narayan-Chen¹ Arpit Gupta¹ Tagyoung Chung¹ Jing Huang¹ Nanyun Peng^{1,3} Wenbo Zhao¹

¹Amazon Alexa Al ²University of California San Diego ³University of California, Los Angeles

* Work done during an internship at Amazon




Bridging Text-audio Correspondence with Image Modality

No text-audio pairs required!

Scalable to large video datasets!

CLIPSynth

Conditional diffusion model

Data

MUSIC

(Zhao et al., 2018)

Violin

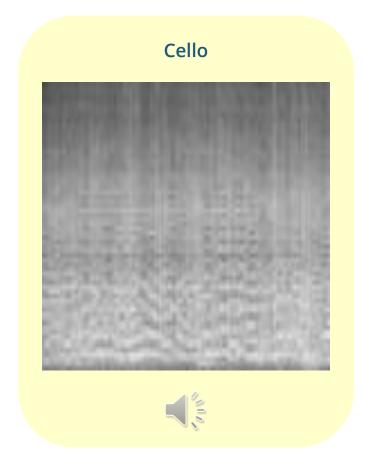
Acoustic guitar

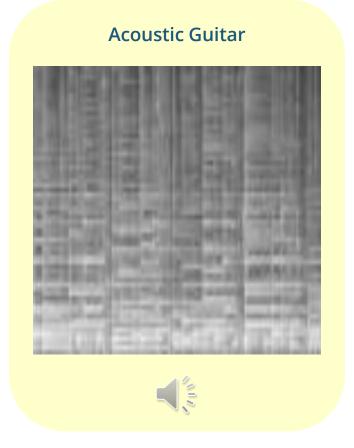
Accordion

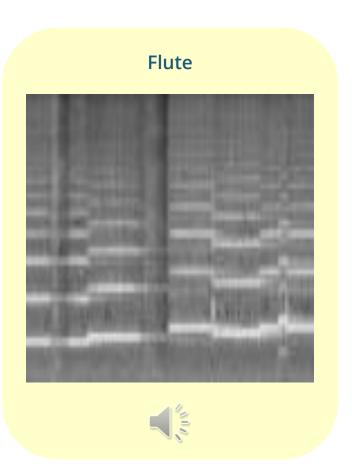
VGGSound

(Chen et al., 2020)

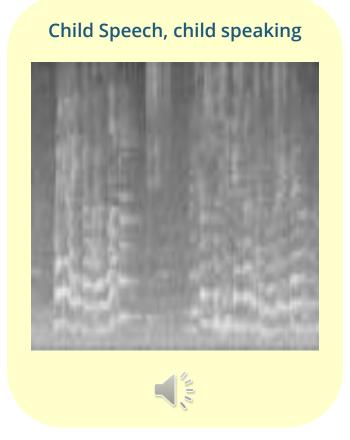
Hedge trimmer running

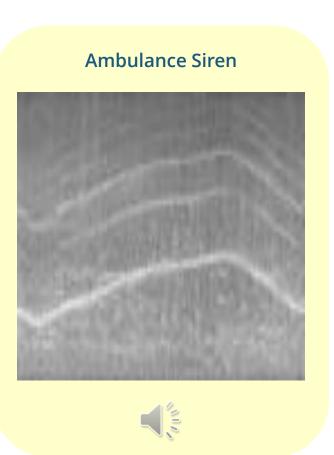

Dog bow-wow




Bird chirping, tweeting

Text-to-Audio Synthesis Demo on MUSIC





Text-to-Audio Synthesis Demo on VGGSound

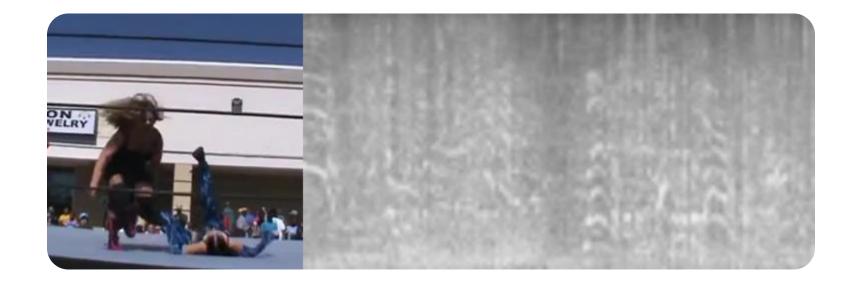


Image-to-Audio Synthesis Demo on VGGsound

More Results in the Paper!

Objective evaluation

Table 1. Results of the objective evaluation. The colors indicate a lower or higher FID/FAD than that of CLIPSynth.

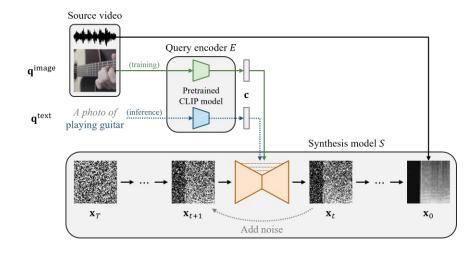
Model	Generative	Unlabeled	Query Type		MUSIC		VGG-Sound	
		data only	Training	Test	FAD↓	FID↓	FAD↓	FID↓
CLIPSynth (proposed)	✓	✓	Image	Text	6.30	40.12	8.68	34.63
CLIPSynth-Text	✓	×	Text	Text	10.32	22.00	6.78	27.50
CLIPSynth-Hybrid	\checkmark	×	Image+Text	Text	6.21	22.62	5.83	25.88
CLIPSynth	✓	✓	Image	Image	2.41	19.30	5.49	24.56
SpecVQGAN [6]	\checkmark	✓	Image	Image	33.45*	-	7.70*	-
CLIPSynth-Text	✓	×	Text	Image	25.96	47.92	8.92	38.44
CLIPSynth-Hybrid	\checkmark	×	Image+Text	Image	4.92	20.52	5.89	25.88
CLIPRetriever (retrieval-based)	×	×	-	Text	10.36	-	2.43	-
Hifi-GAN reconstructions	×	-	-	-	2.64	-	4.09	-

^{*}We used a pretrained model trained on VGG-Sound released by the authors since we could not reproduce their results when training the model from scratch.

Subjective listening test

Table 2. Results of the subjective listening test.

Model	Unlabeled data only	Query Type		MUSIC			VGG-Sound		
		Training	Test	Quality↑	Relevance [†]	Noise↓	Quality↑	Relevance [†]	Noise↓
CLIPSynth (proposed)	✓	Image	Text	0.511	0.473	0.481	0.500	0.388	0.619
CLIPSynth-Text CLIPSynth-Hybrid	×	Text Image+Text	Text Text	0.405 0.434	0.505 0.447	0.510 0.531	0.405 0.431	0.505 0.448	0.500 0.547
CLIPRetriever	✓	-	Text	0.724	0.653	0.398	0.750	0.712n	0.297


Limitations & Future Work

- Off-screen sounds occur frequently in videos
 - Increases undesired zero-shot modality transfer gap
- Cannot handle purely audio-specific queries
 - Because they have little meaning in the visual domain
 - For example, "loud," "quiet," "high-pitched" and "low-pitched"
- How to enable combinatory prompts?
 - For example, "piano + guitar"
- Scale up to larger video datasets!

Thank you!

CLIPSynth

A new text-to-audio synthesis model that can be trained using only unlabeled videos

