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Bridging Text-audio Correspondence with Image Modality
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No text-audio pairs required! Scalable to large video datasets!
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Data

MUSIC VGGSound
(Zhao et al., 2018) (Chen et al., 2020)
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Acoustic guitar Accordion

Zhao et al., “The Sound of Pixels,” Proc. ECCV, 2018.
Chen et al., “WGGSound: A Large-Scale Audio-Visual Dataset,” Proc. ICASSP, 2020.



Text-to-Audio Synthesis Demo on MUSIC

Cello Acoustic Guitar Flute




Text-to-Audio Synthesis Demo on VGGSound i

Demo

People Crowd Child Speech, child speaking Ambulance Siren




~ Image-to-Audio Synthesis Demo on VGGsound
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More Results in the Paper!

Objective evaluation Subjective listening test

Table 1. Results of the objective evaluation. The colors indicate a lower or higher FID/FAD than that of CLIPSynth.

Unlabeled Query Type MUSIC VGG-Sound
Model Generative 3.0 o0
Y Training Test FAD/] FID| FAD| FID] ) o
Table 2. Results of the subjective listening test.
CLIPSynth (proposed) v v Image Text 6.30 40.12 8.68 34.63 " Untabeled Query Type MUSIC e —
ode! a1z ;

CLIPSynth-Text A v ® Text Text 10.32 22.00 6.78 27.50 data only Training Test  Qualityt  Relevancel Noisel Qualityl Relevancet  Noisel
CLIPSynth-Hybrid v X Image+Text  Text 6.21 22.62 5.83 25.88

CLIPSynth (proposed) v Image Text 0.511 0.473 0.481 0.500 0.388 0.619
CLIPSynth v v Image Image 241 1930 549 2456 " -
SpecVQGAN [6] v v Image Image = 33.45° B 7.70* - CLIPSynth-Text ‘ X Text Text 0.405 0.505 0.510 0.405 0.505 0.500

CLIPSynth-Hybrid b Image+Text  Text 0.434 0.447 0.531 0.431 0.448 0.547
CLIPSynth-Text v X Text Image 2596 4792 8.92 38.44 . 5

} S 3 5 2

CLIPSynth-Hybrid v x Image+Text  Image 492 2052 589 2588 CLIPRetriever ’ Text 074 0053 038 OB0 07in 0297
CLIPRetriever (retrieval-based) X X - Text 10.36 - 243 -
Hifi-GAN reconstructions x - - - 2.64 - 4.09 -

*We used a pretrained model trained on VGG-Sound released by the authors since we could not reproduce their results when training the model from scratch.



Limitations & Future Work

Off-screen sounds occur frequently in videos

* Increases undesired zero-shot modality transfer gap

Cannot handle purely audio-specific queries
- Because they have little meaning in the visual domain

n i

- For example, “loud,” “quiet,” “high-pitched” and “low-pitched”

How to enable combinatory prompts?
- For example, “piano + guitar”

Scale up to larger video datasets!



Thank youl!

CLIPSynth

A new text-to-audio synthesis model that
can be trained using only unlabeled videos
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