

Towards Automatic Instrumentation by Learning to Separate Parts in Multitrack Music

Hao-Wen Dong¹ Chris Donahue² Taylor Berg-Kirkpatrick¹ Julian McAuley¹ ¹ University of California San Diego ² Stanford University

UC San Diego Stanford

Automatic instrumentation

• **Goal**—Dynamically assign instruments to notes in solo music

Intelligent musical instruments

Assistive composing tools

Overview

- Acquire paired data
 - Downmix multitracks into single-track mixtures
- Train a part separation model
 - Learn to infer the part label for each note in a mixture
- Approach automatic instrumentation
 - Treat the input as a mixture
 - Separate out the relevant parts

Data

• Four datasets of diverse genres and ensembles

Dataset	Hours	Files	Notes	Parts	Ensemble	Most common label
Bach chorales [31]	3.23	409	96.6K	4	soprano, alto, tenor, bass	bass (27.05%)
String quartets [32]	6.31	57	226K	4	first violin, second violin, viola, cello	first violin (38.72%)
Game music [33]	45.05	4.61K	2.46M	3	pulse wave I, pulse wave II, triangle wave	pulse wave II (39.35%)
Pop music [34]	1.02K	16.2K	63.6M	5	piano, guitar, bass, strings, brass	guitar (42.50%)

Data representation

A sequence of notes specified by

- Time—onset time (in time step)
- **Pitch**—pitch as a MIDI note number
- Duration—note length (in time step)
- Frequency—frequency of the pitch (in Hz)
- Beat—onset time (in beat)
- Position—position within a beat (in time step)

Model

Online models

- LSTMs
- Transformer decoders

Offline models

- BiLSTMs
- Transformer encoders

Bach chorales

(Audio available.¹ Colors: first violin, second violin, viola, cello.)

Game music

Pop music

Ground truth	
Online LSTM prediction	
Offline BiLSTM prediction	

(Audio available.¹ Colors: piano, guitar, bass, strings, brass.)

Demo

• Our proposed models can produce alternative convincing instrumentations for an existing arrangement.

Summary

- Proposed a new task of part separation
- Showed that our proposed models outperform various baselines
- Presented promising results for applying a part separation model to automatic instrumentation

Thank you!

Learn more at https://salu133445.github.io/arranger/