Flow-based Deep Generative Models

Jiarui Xu and Hao-Wen Dong

Outlines

- Deep generative models
- Different generative models
- GAN vs VAE vs Flow-based models
- Linear algebra basics
- Jacobian matrix and determinant
- Change of variable theorem
- Normalizing Flows
- NICE, RealNVP and Glow
- Autoregressive Flows
- MAF and IAF

Deep Generative Models

Different generative models

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs)

- A discriminator D estimates the probability of a given sample coming from the real dataset.
- A generator G outputs synthetic samples given a noise variable input.

Generative Adversarial Networks (GANs)

Define:
Generator G with parameter θ_{g}, Discriminator D with parameter θ_{d}.
Data distribution over noise input $z: p_{z}(z)$ (usually uniform distribution)
Data distribution over real sample: $p_{\text {data }}(x)$

Generative Adversarial Networks (GANs)

Define:
Generator G with parameter θ_{g}, Discriminator D with parameter θ_{d}.
Data distribution over noise input $z: p_{z}(z)$ (usually uniform distribution)
Data distribution over real sample: $p_{\text {data }}(x)$
D should distinguish between real and fake data:

$$
\max _{\theta_{d}}\left[\mathbb{E}_{x \sim p_{\text {data }}} \log D(x)+\mathbb{E}_{z \sim p(z)} \log (1-D(G(z)))\right]
$$

Generative Adversarial Networks (GANs)

Define:
Generator G with parameter θ_{g}, Discriminator D with parameter θ_{d}.
Data distribution over noise input $z: p_{z}(z)$ (usually uniform distribution)
Data distribution over real sample: $p_{\text {data }}(x)$
D should distinguish between real and fake data:

$$
\max _{\theta_{d}}\left[\mathbb{E}_{x \sim p_{\text {data }}} \log D(x)+\mathbb{E}_{z \sim p(z)} \log (1-D(G(z)))\right]
$$

G should be able to fool discriminator:

$$
\min _{\theta_{g}} \mathbb{E}_{z \sim p(z)} \log (1-D(G(z)))
$$

Generative Adversarial Networks (GANs)

Define:
Generator G with parameter θ_{g}, Discriminator D with parameter θ_{d}.
Data distribution over noise input $z: p_{z}(z)$ (usually uniform distribution)
Data distribution over real sample: $p_{\text {data }}(x)$
When combining two targets together, G and D are playing a minimax game:

$$
\min _{\theta_{g}} \max _{\theta_{d}}\left[\mathbb{E}_{x \sim p_{\text {data }}} \log D(x)+\mathbb{E}_{z \sim p(z)} \log (1-D(G(z)))\right]
$$

Generative Adversarial Networks (GANs)

Variational Autoencoders (VAEs)

Some background: Autoencoders

Variational Autoencoders (VAEs)

Some background: Autoencoders

- Features capture factors of variation in training data.

Fei-Fei Li, Ranjay Krishna, and Danfei Xu, "Lecture 11: Generative Models," lecture note, Stanford CS231n, 2020.

Variational Autoencoders (VAEs)

Some background: Autoencoders

- Features capture factors of variation in training data.
- But we can't generate new images from an autoencoder because we don't know the space of z.

Variational Autoencoders (VAEs)

Some background: Autoencoders

- Features capture factors of variation in training data.
- But we can't generate new images from an autoencoder because we don't know the space of z.
- How do we make autoencoder a generative model?

Variational Autoencoders (VAEs)

We sample a z from a prior distribution $p_{\theta}(z)$. Then x is generated from a conditional distribution $p_{\theta}(x \mid z)$. The process is

$$
p_{\theta}(\mathbf{x})=\int p_{\theta}(\mathbf{x} \mid \mathbf{z}) p_{\theta}(\mathbf{z}) d \mathbf{z}
$$

Variational Autoencoders (VAEs)

We sample a z from a prior distribution $p_{\theta}(z)$. Then x is generated from a conditional distribution $p_{\theta}(x \mid z)$. The process is

$$
p_{\theta}(\mathbf{x})=\int p_{\theta}(\mathbf{x} \mid \mathbf{z}) p_{\theta}(\mathbf{z}) d \mathbf{z}
$$

However, it is very expensive to check all z for integral (intractable). To narrow down the value space, consider the posterior $p_{\theta}(z \mid x)$ and approximate it by $q_{\phi}(z \mid x)$.

Variational Autoencoders (VAEs)

$$
\begin{aligned}
& \log p_{\theta}(x) \\
& =\mathbf{E}_{z \sim q_{\phi}(z \mid x)}\left[\log p_{\theta}(x)\right] \\
& =\mathbf{E}_{z \sim q_{\phi}(z \mid x)}\left[\log \frac{p_{\theta}(x \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x)}\right] \\
& =\mathbf{E}_{z \sim q_{\phi}(z \mid x)}\left[\log \frac{p_{\theta}(x \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x)} \frac{q_{\phi}(z \mid x)}{q_{\phi}(z \mid x)}\right] \\
& =\mathbf{E}_{z \sim q_{\phi}(z \mid x)}\left[\log p_{\theta}(x \mid z)\right]-\mathbf{E}_{z \sim q_{\phi}(z \mid x)}\left[\log \frac{q_{\phi}(z \mid x)}{p_{\theta}(z)}\right]+\mathbf{E}_{z \sim q_{\phi}(z \mid x)}\left[\log \frac{q_{\phi}(z \mid x)}{p_{\theta}(z \mid x)}\right] \\
& =\mathbb{E}_{z \sim q_{\phi}(z \mid x)}\left[\log p_{\theta}(x \mid z)\right]-D_{K L}\left(q_{\phi}(z \mid x) \| p_{\theta}(z)\right)+D_{K L}\left(q_{\phi}(z \mid x) \| p_{\theta}(z \mid x)\right) \\
& \geq \mathbb{E}_{z \sim q_{\phi}(z \mid x)}\left[\log p_{\theta}(x \mid z)\right]-D_{K L}\left(q_{\phi}(z \mid x) \| p_{\theta}(z)\right) \\
& \text { DiederikLBO } \mathrm{Elngm}(x ; \theta, \phi)
\end{aligned}
$$

Variational Autoencoders (VAEs)

We sample a z from a prior distribution $p_{\theta}(z)$. Then x is generated from a conditional distribution $p_{\theta}(x \mid z)$. The process is

$$
p_{\theta}(\mathbf{x})=\int p_{\theta}(\mathbf{x} \mid \mathbf{z}) p_{\theta}(\mathbf{z}) d \mathbf{z}
$$

However, it is very expensive to check all z for integral (intractable). To narrow down the value space, consider the posterior $p_{\theta}(z \mid x)$ and approximate it by $q_{\phi}(z \mid x)$.

Variational Autoencoders (VAEs)

We sample a z from a prior distribution $p_{\theta}(z)$. Then x is generated from a conditional distribution $p_{\theta}(x \mid z)$. The process is

$$
p_{\theta}(\mathbf{x})=\int p_{\theta}(\mathbf{x} \mid \mathbf{z}) p_{\theta}(\mathbf{z}) d \mathbf{z}
$$

However, it is very expensive to check all z for integral (intractable). To narrow down the value space, consider the posterior $p_{\theta}(z \mid x)$ and approximate it by $q_{\phi}(z \mid x)$.

The data likelihood

$$
\begin{gathered}
\log p_{\theta}(x)=\mathbb{E}_{z \sim q_{\phi}(z \mid x)}\left[\log p_{\theta}(x \mid z)\right]-D_{K L}\left(q_{\phi}(z \mid x) \| p_{\theta}(z)\right)+D_{K L}\left(q_{\phi}(z \mid x) \| p_{\theta}(z \mid x)\right) \\
\geq \mathbb{E}_{z \sim q_{\phi}(z \mid x)}\left[\log p_{\theta}(x \mid z)\right]-D_{K L}\left(q_{\phi}(z \mid x) \| p_{\theta}(z)\right)=\operatorname{ELBO}(x ; \theta, \phi)
\end{gathered}
$$

Variational Autoencoders (VAEs)

We sample a z from a prior distribution $p_{\theta}(z)$. Then x is generated from a conditional distribution $p_{\theta}(x \mid z)$. The process is

$$
p_{\theta}(\mathbf{x})=\int p_{\theta}(\mathbf{x} \mid \mathbf{z}) p_{\theta}(\mathbf{z}) d \mathbf{z}
$$

However, it is very expensive to check all z for integral (intractable). To narrow down the value space, consider the posterior $p_{\theta}(z \mid x)$ and approximate it by $q_{\phi}(z \mid x)$.

The data likelihood

$$
\begin{gathered}
\log p_{\theta}(x)=\mathbb{E}_{z \sim q_{\phi}(z \mid x)}\left[\log p_{\theta}(x \mid z)\right]-D_{K L}\left(q_{\phi}(z \mid x) \| p_{\theta}(z)\right)+D_{K L}\left(q_{\phi}(z \mid x) \| p_{\theta}(z \mid x)\right) \\
\geq \mathbb{E}_{z \sim q_{\phi}(z \mid x)}\left[\log p_{\theta}(x \mid z)\right]-D_{K L}\left(q_{\phi}(z \mid x) \| p_{\theta}(z)\right)=\operatorname{ELBO}(x ; \theta, \phi)
\end{gathered}
$$

$\operatorname{ELBO}(x ; \theta, \phi)$ is tractable, $\max _{\theta} \log p_{\theta}(x) \rightarrow \max _{\theta, \phi} \operatorname{ELBO}(x ; \theta, \phi)$.

Variational Autoencoders (VAEs)

Input
Ideally they are identical.
$\mathbf{x} \approx \mathbf{x}^{\prime}$
Probabilistic Encoder
$\square \quad \begin{array}{r}\text { Probabilistic En } \\ q_{\phi}(\mathbf{z} \mid \mathbf{x})\end{array}$

$$
\mathbf{z}=\boldsymbol{\mu}+\boldsymbol{\sigma} \odot \boldsymbol{\epsilon}
$$

$$
\boldsymbol{\epsilon} \sim \mathcal{N}(0, \boldsymbol{I})
$$

Sampled

GANs vs VAEs vs Flow-based models

Optimization target

GANs vs VAEs vs Flow-based models

Optimization target

GAN:

$$
\min _{\theta_{g}} \max _{\theta_{d}}\left[\mathbb{E}_{x \sim p_{\text {data }}} \log D_{\theta_{d}}(x)+\mathbb{E}_{z \sim p(z)} \log \left(1-D_{\theta_{d}}\left(G_{\theta_{g}}(z)\right)\right)\right]
$$

GANs vs VAEs vs Flow-based models

Optimization target

GAN:

$$
\min _{\theta_{g}} \max _{\theta_{d}}\left[\mathbb{E}_{x \sim p_{\text {data }}} \log D_{\theta_{d}}(x)+\mathbb{E}_{z \sim p(z)} \log \left(1-D_{\theta_{d}}\left(G_{\theta_{g}}(z)\right)\right)\right]
$$

VAE:

$$
\begin{gathered}
\max _{\theta, \phi} \mathbb{E}_{z \sim q_{\phi}(z \mid x)}\left[\log p_{\theta}(x \mid z)\right]-D_{K L}\left(q_{\phi}(z \mid x) \| p_{\theta}(z)\right) \\
=\operatorname{ELBO}(x ; \theta, \phi)
\end{gathered}
$$

GANs vs VAEs vs Flow-based models

Optimization target

GAN:

$$
\min _{\theta_{g}} \max _{\theta_{d}}\left[\mathbb{E}_{x \sim p_{\text {data }}} \log D_{\theta_{d}}(x)+\mathbb{E}_{z \sim p(z)} \log \left(1-D_{\theta_{d}}\left(G_{\theta_{g}}(z)\right)\right)\right]
$$

VAE:

$$
\begin{gathered}
\max _{\theta, \phi} \mathbb{E}_{z \sim q_{\phi}(z \mid x)}\left[\log p_{\theta}(x \mid z)\right]-D_{K L}\left(q_{\phi}(z \mid x) \| p_{\theta}(z)\right) \\
=\operatorname{ELBO}(x ; \theta, \phi)
\end{gathered}
$$

Flow-based generative models:

$$
\max _{\theta} \mathbb{E}_{x \sim p_{\text {data }}} \log p_{\theta}(x)
$$

GANs vs VAEs vs Flow-based models

GAN: minimax the classification error loss

VAE: maximize ELBO.

Flow-based generative models: minimize the negative log-likelihood

How to estimate data likelihood directly?

Linear Algebra Basics

Jacobian matrix

Given a function $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ that takes as input a n-dimensional input vector \mathbf{x} and output a m-dimensional vector, the Jacobian matrix of \mathbf{f} is defined as

$$
\mathbf{J}=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

which is the matrix of all first-order partial derivatives. The entry on the i-th row and j-th column is

$$
\mathbf{J}_{i j}=\frac{\partial f_{i}}{\partial x_{j}}
$$

Change of variable theorem

Given some random variable $z \sim \pi(z)$ and a invertible mapping $x=f(z)$ (i.e., $\left.z=f^{-1}(x)=g(x)\right)$. Then, the distribution of x is

$$
p(x)=\pi(z)\left|\frac{d z}{d x}\right|=\pi(g(x))\left|\frac{d g}{d x}\right|
$$

Change of variable theorem

Given some random variable $z \sim \pi(z)$ and a invertible mapping $x=f(z)$ (i.e., $\left.z=f^{-1}(x)=g(x)\right)$. Then, the distribution of x is

$$
p(x)=\pi(z)\left|\frac{d z}{d x}\right|=\pi(g(x))\left|\frac{d g}{d x}\right|
$$

The multivariate version takes the following form:

$$
p(\mathbf{x})=\pi(\mathbf{z})\left|\operatorname{det} \frac{d \mathbf{z}}{d \mathbf{x}}\right|=\pi(g(\mathbf{x}))\left|\operatorname{det} \frac{d g}{d \mathbf{x}}\right|
$$

where $\operatorname{det} \frac{d g}{d \mathbf{x}}$ is the Jacobian determinant of g.

Normalizing Flows

Normalizing flows

Key: Transform a simple distribution into a complex one by applying a sequence of invertible transformations.

Normalizing flows

Key: Transform a simple distribution into a complex one by applying a sequence of invertible transformations.

- In each step, substitute the variable with the new one by change of variables theorem.
- Eventually, obtain a distribution close enough to the target distribution.

Normalizing flows

For each step, we have $\mathbf{z}_{i} \sim p_{i}\left(\mathbf{z}_{i}\right), \mathbf{z}_{i}=f_{i}\left(\mathbf{z}_{i-1}\right)$ and $\mathbf{z}_{i-1}=g_{i}\left(\mathbf{z}_{i}\right)$. Now,

$$
\begin{aligned}
p_{i}\left(\mathbf{z}_{i}\right) & =p_{i-1}\left(g_{i}\left(\mathbf{z}_{i}\right)\right)\left|\operatorname{det} \frac{d g_{i}\left(\mathbf{z}_{i}\right)}{d \mathbf{z}_{i}}\right| & & \text { (by change of variables theorem) } \\
& =p_{i-1}\left(\mathbf{z}_{i-1}\right)\left|\operatorname{det} \frac{d \mathbf{z}_{i-1}}{d f_{i}\left(\mathbf{z}_{i-1}\right)}\right| & & (\text { by definition }) \\
& =p_{i-1}\left(\mathbf{z}_{i-1}\right)\left|\operatorname{det}\left(\frac{d f_{i}\left(\mathbf{z}_{i-1}\right)}{d \mathbf{z}_{i-1}}\right)^{-1}\right| & & (\text { by inverse function theorem }) \\
& =p_{i-1}\left(\mathbf{z}_{i-1}\right)\left|\operatorname{det} \frac{d f_{i}}{d \mathbf{z}_{i-1}}\right|^{-1} & & \left(b y \operatorname{det} M \operatorname{det}\left(M^{-1}\right)=\operatorname{det} I=1\right)
\end{aligned}
$$

Thus, we have $\log p_{i}\left(\mathbf{z}_{i}\right)=\log p_{i-1}\left(\mathbf{z}_{i-1}\right)-\log \left|\operatorname{det} \frac{d f_{i}}{d \mathbf{z}_{i-1}}\right|$.
Danilo Jimenez Rezende and Shakir Mohamed, "Variational Inference with Normalizing Flows," ICML, 2015.

Normalizing flows

Now, we obtain $\log p_{i}\left(\mathbf{z}_{i}\right)=\log p_{i-1}\left(\mathbf{z}_{i-1}\right)-\log \left|\operatorname{det} \frac{d f_{i}}{d \mathbf{z}_{i-1}}\right|$
Recall that $\mathbf{x}=\mathbf{z}_{K}=f_{K} \circ f_{K-1} \circ \cdots \circ f_{1}\left(\mathbf{z}_{\mathbf{0}}\right)$.
Thus, we have

$$
\begin{aligned}
\log p(\mathbf{x}) & =\log p_{K}\left(\mathbf{z}_{K}\right) \\
& =\log p_{K-1}\left(\mathbf{z}_{K-1}\right)-\log \left|\operatorname{det} \frac{d f_{K}}{d \mathbf{z}_{K-1}}\right| \\
& =\ldots \\
& =\log p_{0}\left(\mathbf{z}_{0}\right)-\sum_{i=1}^{K} \log \left|\operatorname{det} \frac{d f_{i}}{d \mathbf{z}_{i-1}}\right|
\end{aligned}
$$

Normalizing flows

In normalizing flows, the exact log-likelihood $\log p(\mathbf{x})$ of input data x is

$$
\log p(\mathbf{x})=\log p_{0}\left(\mathbf{z}_{0}\right)-\sum_{i=1}^{K} \log \left|\operatorname{det} \frac{d f_{i}}{d \mathbf{z}_{i-1}}\right|
$$

Normalizing flows

In normalizing flows, the exact log-likelihood $\log p(\mathbf{x})$ of input data x is

$$
\log p(\mathbf{x})=\log p_{0}\left(\mathbf{z}_{0}\right)-\sum_{i=1}^{K} \log \left|\operatorname{det} \frac{d f_{i}}{d \mathbf{z}_{i-1}}\right|
$$

To make the computation tractable, it requires

- f_{i} is easily invertible
- The Jacobian determinant of f_{i} is easy to compute

Normalizing flows

In normalizing flows, the exact \log-likelihood $\log p(\mathbf{x})$ of input data x is

$$
\log p(\mathbf{x})=\log p_{0}\left(\mathbf{z}_{0}\right)-\sum_{i=1}^{K} \log \left|\operatorname{det} \frac{d f_{i}}{d \mathbf{z}_{i-1}}\right|
$$

To make the computation tractable, it requires

- f_{i} is easily invertible
- The Jacobian determinant of f_{i} is easy to compute

Then, we can train the model by maximizing the log-likelihood over some training dataset \mathcal{D}

$$
L L(\mathcal{D})=\sum_{\mathbf{x} \in \mathcal{D}} \log p(\mathbf{x})
$$

NICE

The core idea behind NICE (Non-linear Independent Components Estimation) is to

1. split $\mathbf{x} \in \mathbb{R}^{D}$ into two blocks $\mathbf{x}_{1} \in \mathbb{R}^{d}$ and $\mathbf{x}_{2} \in \mathbb{R}^{D-d}$

NICE

The core idea behind NICE (Non-linear Independent Components Estimation) is to

1. split $\mathbf{x} \in \mathbb{R}^{D}$ into two blocks $\mathbf{x}_{1} \in \mathbb{R}^{d}$ and $\mathbf{x}_{2} \in \mathbb{R}^{D-d}$
2. apply the following transformation from $\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ to $\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)$

$$
\begin{cases}\mathbf{y}_{1} & =\mathbf{x}_{1} \\ \mathbf{y}_{2} & =\mathbf{x}_{2}+m\left(\mathbf{x}_{1}\right)\end{cases}
$$

where $m(\cdot)$ is an arbitrarily function (e.g., a deep neural network).

NICE - Additive coupling layers

The transformation

$$
\begin{cases}\mathbf{y}_{1} & =\mathbf{x}_{1} \\ \mathbf{y}_{2} & =\mathbf{x}_{2}+m\left(\mathbf{x}_{1}\right)\end{cases}
$$

- is trivially invertible.

$$
\begin{cases}\mathbf{x}_{1} & =\mathbf{y}_{1} \\ \mathbf{x}_{2} & =\mathbf{y}_{2}-m\left(\mathbf{y}_{1}\right)\end{cases}
$$

NICE - Additive coupling layers

The transformation

$$
\begin{cases}\mathbf{y}_{1} & =\mathbf{x}_{1} \\ \mathbf{y}_{2} & =\mathbf{x}_{2}+m\left(\mathbf{x}_{1}\right)\end{cases}
$$

- has a unit Jacobian determinant.

$$
\begin{gathered}
\mathbf{J}=\left[\begin{array}{cc}
\mathbf{I}_{d} & \mathbf{0}_{d \times(D-d)} \\
\frac{\partial m\left(\mathbf{x}_{1}\right)}{\partial \mathbf{x}_{1}} & \mathbf{I}_{D-d}
\end{array}\right] \\
\operatorname{det}(\mathbf{J})=\mathbf{I}
\end{gathered}
$$

Note that NICE is a type of volume-preserving flows as it has a unit Jacobian determinant.

NICE - Alternating pattern

Some dimensions remain unchanged after the transform

- alternate the dimensions being modified
- 3 coupling layers are necessary to allow all dimensions to influence one another

NICE - Experiments on MNIST

Settings: 784 dimensions (28×28), 6 additive coupling layers

RealNVP

The core idea behind RealNVP (Real-valued Non-Volume Preserving) is to

1. split $\mathbf{x} \in \mathbb{R}^{D}$ into two blocks $\mathbf{x}_{1} \in \mathbb{R}^{d}$ and $\mathbf{x}_{2} \in \mathbb{R}^{D-d}$

RealNVP

The core idea behind RealNVP (Real-valued Non-Volume Preserving) is to

1. split $\mathbf{x} \in \mathbb{R}^{D}$ into two blocks $\mathbf{x}_{1} \in \mathbb{R}^{d}$ and $\mathbf{x}_{2} \in \mathbb{R}^{D-d}$
2. apply the following transformation from $\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ to $\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)$

$$
\begin{cases}\mathbf{y}_{1: d} & =\mathbf{x}_{1: d} \\ \mathbf{y}_{d+1: D} & =\mathbf{x}_{d+1: D} \odot e^{s\left(\mathbf{x}_{1: d}\right)}+t\left(\mathbf{x}_{1: d}\right)\end{cases}
$$

where $s(\cdot)$ and $t(\cdot)$ are scale and translation functions that map \mathbb{R}^{d} to \mathbb{R}^{D-d}, and \odot denotes the element-wise product.

RealNVP

The core idea behind RealNVP (Real-valued Non-Volume Preserving) is to

1. split $\mathbf{x} \in \mathbb{R}^{D}$ into two blocks $\mathbf{x}_{1} \in \mathbb{R}^{d}$ and $\mathbf{x}_{2} \in \mathbb{R}^{D-d}$
2. apply the following transformation from $\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ to $\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)$

$$
\begin{cases}\mathbf{y}_{1: d} & =\mathbf{x}_{1: d} \\ \mathbf{y}_{d+1: D} & =\mathbf{x}_{d+1: D} \odot e^{s\left(\mathbf{x}_{1: d}\right)}+t\left(\mathbf{x}_{1: d}\right)\end{cases}
$$

where $s(\cdot)$ and $t(\cdot)$ are scale and translation functions that map \mathbb{R}^{d} to \mathbb{R}^{D-d}, and \odot denotes the element-wise product.
(Note that NICE does not have the scaling term.)

RealNVP - Affine coupling layers

The transformation

$$
\begin{cases}\mathbf{y}_{1: d} & =\mathbf{x}_{1: d} \\ \mathbf{y}_{d+1: D} & =\mathbf{x}_{d+1: D} \odot e^{s\left(\mathbf{x}_{1: d}\right)}+t\left(\mathbf{x}_{1: d}\right)\end{cases}
$$

- is easily invertible.

$$
\begin{cases}\mathbf{x}_{1: d} & =\mathbf{y}_{1: d} \\ \mathbf{x}_{d+1: D} & =\left(\mathbf{y}_{d+1: D}-t\left(\mathbf{x}_{1: d}\right)\right) \odot e^{-s\left(\mathbf{x}_{1: d}\right)}\end{cases}
$$

(Note that it does not involve computing s^{-1} and t^{-1}.)

RealNVP - Affine coupling layers

The transformation

$$
\begin{cases}\mathbf{y}_{1: d} & =\mathbf{x}_{1: d} \\ \mathbf{y}_{d+1: D} & =\mathbf{x}_{d+1: D} \odot e^{s\left(\mathbf{x}_{1: d}\right)}+t\left(\mathbf{x}_{1: d}\right)\end{cases}
$$

- has a Jacobian determinant that is easy to compute.

$$
\begin{aligned}
\mathbf{J} & =\left[\begin{array}{cc}
\mathbf{I}_{d} & \mathbf{0}_{d \times(D-d)} \\
\frac{\partial \mathbf{y}_{d+1: D}}{\partial \mathbf{x}_{1: d}} & \operatorname{diag}\left(e^{s\left(\mathbf{x}_{1: d}\right)}\right)
\end{array}\right] \\
\operatorname{det}(\mathbf{J}) & =\prod_{j=1}^{D-d} e^{s\left(\mathbf{x}_{1: d}\right)_{j}}=\exp \left(\sum_{j=1}^{D-d} s\left(\mathbf{x}_{1: d}\right)_{j}\right)
\end{aligned}
$$

(Note that it does not involve computing the Jacobian of s and t.)

RealNVP - Experiments on toy data

Settings: 2D data, 5 affine coupling layers

RealNVP - Experiments on toy data

Settings: 2D data, 5 affine coupling layers

RealNVP - Experiments on MNIST

Settings: 784 dimensions $(28 \times 28), 5$ affine coupling layers

Digit 2

All digits

Glow

- Actnorm:
- Forward: $\mathbf{y}=\mathbf{s} \odot \mathbf{x}+\mathbf{b}$
- Backward: $\mathbf{x}=\mathbf{s} \odot(\mathbf{y}-\mathbf{b})$
- Log-determinant: $h \cdot w \cdot \sum_{i} \log \left|\mathbf{s}_{i}\right|$

Glow

- Actnorm:
- Forward: $\mathbf{y}=\mathbf{s} \odot \mathbf{x}+\mathbf{b}$
- Backward: $\mathbf{x}=\mathbf{s} \odot(\mathbf{y}-\mathbf{b})$
- Log-determinant: $h \cdot w \cdot \sum_{i} \log \left|\mathbf{s}_{i}\right|$
- Invertible 1×1 convolution:
- Forward: $\mathbf{y}=\mathbf{W} \mathbf{x}$
- Backward: $\mathbf{x}=\mathbf{W}^{-1} \mathbf{y}$
- Log-determinant: $h \cdot w \cdot \log |\operatorname{det} \mathbf{W}|$

Glow

- Actnorm:
- Forward: $\mathbf{y}=\mathbf{s} \odot \mathbf{x}+\mathbf{b}$
- Backward: $\mathbf{x}=\mathbf{s} \odot(\mathbf{y}-\mathbf{b})$
- Log-determinant: $h \cdot w \cdot \sum_{i} \log \left|\mathbf{s}_{i}\right|$
- Invertible 1×1 convolution:
- Forward: $\mathbf{y}=\mathbf{W} \mathbf{x}$
- Backward: $\mathbf{x}=\mathbf{W}^{-1} \mathbf{y}$
- Log-determinant: $h \cdot w \cdot \log |\operatorname{det} \mathbf{W}|$
- Affine coupling Layer: same as RealNVP

Glow - Samples

Autoregressive Flows

Autoregressive flows

Key: Model the transformation in a normalizing flow as an autoregressive model.
In an autoregressive model, we assume that the current output depends only on the data observed in the past and factorize the joint probability $p\left(x_{1}, x_{2}, \ldots, x_{D}\right)$ into the product of the probability of observing x_{i} conditioned on the past observations $x_{1}, x_{2}, \ldots, x_{i-1}$.

$$
\begin{aligned}
p(\mathbf{x}) & =p\left(x_{1}, x_{2}, \ldots, x_{D}\right) \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \ldots p\left(x_{D} \mid x_{1}, x_{2}, \ldots, x_{D-1}\right) \\
& =\prod_{i=1}^{D} p\left(x_{i} \mid x_{1}, x_{2}, \ldots, x_{i-1}\right) \\
& =\prod_{i=1}^{D} p\left(x_{i} \mid \mathbf{x}_{1: i-1}\right)
\end{aligned}
$$

Masked autoregressive flow (MAF)

Given two random variables $\mathbf{z} \sim \pi(\mathbf{z})$ and $\mathbf{x} \sim p(\mathbf{x})$ where $\pi(\mathbf{z})$ is known but $p(\mathbf{x})$ is unknown. Masked autoregressive flow (MAF) aims to learn $p(x)$.

- Sampling:

$$
x_{i} \sim p\left(x_{i} \mid \mathbf{x}_{1: i-1}\right)=z_{i} \odot \sigma_{i}\left(\mathbf{x}_{1: i-1}\right)+\mu_{i}\left(\mathbf{x}_{1: i-1}\right)
$$

Note that this computation is slow as it is sequential and autoregressive.

Masked autoregressive flow (MAF)

Given two random variables $\mathbf{z} \sim \pi(\mathbf{z})$ and $\mathbf{x} \sim p(\mathbf{x})$ where $\pi(\mathbf{z})$ is known but $p(\mathbf{x})$ is unknown. Masked autoregressive flow (MAF) aims to learn $p(x)$.

- Sampling:

$$
x_{i} \sim p\left(x_{i} \mid \mathbf{x}_{1: i-1}\right)=z_{i} \odot \sigma_{i}\left(\mathbf{x}_{1: i-1}\right)+\mu_{i}\left(\mathbf{x}_{1: i-1}\right)
$$

Note that this computation is slow as it is sequential and autoregressive.

- Density estimation:

$$
p(\mathbf{x})=\prod_{i=1}^{D} p\left(x_{i} \mid \mathbf{x}_{1: i-1}\right)
$$

Note that this computation can be fast if we use the masking approach introduced in MADE as it only requires one single pass to the network.

Inverse autoregressive flow (IAF)

In MAF, we have $x_{i}=z_{i} \odot \sigma_{i}\left(\mathbf{x}_{1: i-1}\right)+\mu_{i}\left(\mathbf{x}_{1: i-1}\right)$. We can reverse it into

$$
z_{i}=x_{i} \odot \frac{1}{\sigma_{i}\left(\mathbf{x}_{1: i-1}\right)}-\frac{\mu_{i}\left(\mathbf{x}_{1: i-1}\right)}{\sigma_{i}\left(\mathbf{x}_{1: i-1}\right)}
$$

Now, if we swap \mathbf{x} and \mathbf{z} (let $\tilde{\mathbf{z}}=\mathbf{x}$ and $\tilde{\mathbf{x}}=\mathbf{z}$), we get the inverse autoregressive flow (IAF)

$$
\begin{aligned}
\tilde{x}_{i} & =\tilde{z}_{i} \odot \frac{1}{\sigma_{i}\left(\tilde{\mathbf{z}}_{1: i-1}\right)}-\frac{\mu_{i}\left(\tilde{\mathbf{z}}_{1: i-1}\right)}{\sigma_{i}\left(\tilde{\mathbf{z}}_{1: i-1}\right)} \\
& =\tilde{z}_{i} \odot \tilde{\sigma}_{i}\left(\tilde{\mathbf{z}}_{1: i-1}\right)+\tilde{\mu}_{i}\left(\tilde{\mathbf{z}}_{1: i-1}\right)
\end{aligned}
$$

where

$$
\tilde{\sigma}_{i}\left(\tilde{\mathbf{z}}_{1: i-1}\right)=\frac{1}{\sigma_{i}\left(\tilde{\mathbf{z}}_{1: i-1}\right)}, \quad \tilde{\mu}_{i}\left(\tilde{\mathbf{z}}_{1: i-1}\right)=-\frac{\mu_{i}\left(\tilde{\mathbf{z}}_{1: i-1}\right)}{\sigma_{i}\left(\tilde{\mathbf{z}}_{1: i-1}\right)}
$$

MAF vs IAF

Masked Autoregressive Flow (MAF)

Inverse Autoregressive Flow (IAF)

$$
\text { (Note that } \tilde{\mathbf{z}}=\mathbf{x}, \tilde{\mathbf{x}}=\mathbf{z}, \tilde{\pi}=p \text { and } \tilde{p}=\pi .)
$$

[^0]
MAF vs IAF

	MAF	IAF
Base distribution	$\mathbf{z} \sim \pi(\mathbf{z})$	$\mathbf{x} \sim p(\mathbf{x})$
Target distribution	$\tilde{\mathbf{z}} \sim \tilde{\pi}(\tilde{\mathbf{z}})$	$\tilde{\mathbf{x}} \sim \tilde{p}(\tilde{\mathbf{x}})$
Model	$x_{i}=z_{i} \odot \sigma_{i}\left(\mathbf{x}_{1: i-1}\right)+\mu_{i}\left(\mathbf{x}_{1: i-1}\right)$	$\tilde{x}_{i}=\tilde{z}_{i} \odot \tilde{\sigma}_{i}\left(\tilde{\mathbf{z}}_{1: i-1}\right)+\tilde{\mu}_{i}\left(\tilde{\mathbf{z}}_{1: i-1}\right)$
Sampling	slow (sequential)	fast (single pass)
Density estimation	fast (single pass)	slow (sequential)

Summary

Summary

- Compare different generative models
- GANs, VAEs and flow-based models
- Survey different normalizing flow models
- NICE, RealNVP, Glow, MAF and IAF
- Conduct experiments on generating MNIST handwritten digits
- NICE and RealNVP

Thank you!

[Code] https://github.com/salu133445/flows
[Slides] https://salu133445.github.io/flows

[^0]: Lilian Weng, "Flow-based Deep Generative Models," blog post, 2018

